Acceso abierto

Substituting Ti-64 with Aa2099 as Material of a Commercial Aircraft Pylon


Cite

1. Prasad N.E., Wanhill R.J.H. Aerospace materials and material technologies. Vol. 3. Singapore: Springer, 2017.10.1007/978-981-10-2143-5 Search in Google Scholar

2. Boyer R.R. An overview on the use of titanium in the aerospace industry. Materials Science and Engineering: A, 213(1-2) (1996) 103-114.10.1016/0921-5093(96)10233-1 Search in Google Scholar

3. Bell T. Titanium properties and characteristics. ThoughtCo. (2019). Search in Google Scholar

4. Sankaran K.K., Mishra R.S. Titanium alloys. In: Metallurgy and design of alloys with hierarchical microstructures. (2017) 177–288. Search in Google Scholar

5. Donachie M.J. Introduction to selection of titanium alloys. In: Titanium - a technical guide. Ohio: ASM International. (2000) 5–11.10.31399/asm.tb.ttg2.t61120005 Search in Google Scholar

6. Tolvanen S. Microstructure and mechanical properties of Ti-6Al-4V welds produced with different processes. Chalmers University of Technology, Gotthenburg, Sweden. (2016). Search in Google Scholar

7. Singh P, Pungotra H, Kalsi N.S. On the characteristics of titanium alloys for the aircraft applications. Materials Today, (2017) 8971–8982.10.1016/j.matpr.2017.07.249 Search in Google Scholar

8. Gomez-Gallegos A, Mandal P, Gonzalez D, Zuelli N, Blackwell P. Studies on titanium alloys for aerospace application. Defect and Diffusion Forum, 385 (2018) 419–423. Search in Google Scholar

9. Rioja R.J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications. Materials Science and Engineering: A, 257(1) (1998) 100–107.10.1016/S0921-5093(98)00827-2 Search in Google Scholar

10. Rioja R.J, Liu J. The evolution of Al-Li base products for aerospace and space applications. Metallurgical and Materials Transactions A, 43(9) (2012) 3325–3337.10.1007/s11661-012-1155-z Search in Google Scholar

11. Alloy 2099-T83 and 2099-T8E67 extrusions. Datasheet. Alcoa Inc, Bettendorf, Iowa, USA (2005). Search in Google Scholar

12. Dong H, Guo F, Huang W, Yang X, Zhu X, Li H, Jiang L. Shear banding behavior of AA2099 Al-Li alloy in asymmetrical rolling and its effect on recrystallization in subsequent annealing. Materials Characterization, 177 (2021) 111155. Search in Google Scholar

13. Balducci E, Ceschini L, Messieri S. High temperature tensile tests of the lightweight 2099 and 2055 Al-Cu-Li alloy: A comparison. JOM, 70(11) (2018) 2716–25. Search in Google Scholar

14. Dorin T, Vahid A, Lamb J. Aluminium Lithium Alloys. In: Fundamentals of Aluminium Metallurgy Woodhead Publishing, (2018) 387–438.10.1016/B978-0-08-102063-0.00011-4 Search in Google Scholar

15. Busson G, Preist J. A380 capability and profitability enhancements. FAST A380 Special Edition (2016). Search in Google Scholar

16. Aluminium Alloy Specifications. Datasheet. Aalco Metals Limited, Wednesbury, Great Britain, (2020). Search in Google Scholar

17. Boyer R, Welsch G, Collings E.W. Materials Properties Handbook - Titanium alloys. ASM International, (1994). Search in Google Scholar

18. Corrosion resistance of titanium. Titanium Metals Corporation. Denver, Colorado, (1997). Search in Google Scholar

19. Davis JR. Aluminum and Aluminum Alloys. Light Met Alloy. ASM International, (2001) 351–416.10.31399/asm.tb.aub.t61170351 Search in Google Scholar

20. Titanium Alloys - Ti6Al4V Grade 5. U.S. Titanium Industry Inc. - AZO Materials, (2002). Search in Google Scholar

21. Morrissey R.J, Nicholas T. Fatigue strength of Ti-6Al-4V at very long lives. International Journal of Fatigue, 27(10-12) (2005) 1608–12.10.1016/j.ijfatigue.2005.07.009 Search in Google Scholar

22. Ti-6Al-4V (Grade 5). Datasheet, Biggleswade, Great Britain (2018). Search in Google Scholar

23. Titanium Ti-6Al-4V. Datasheet, Newbury, Great Britain (2020). Search in Google Scholar

24. Yang R, Yang J, Xie K, Liu Z, Zhang G. Investigation of micro-yield strength and coefficient of thermal expansion of Al-Cu-Mg-Li-Sc-Ag alloys with various contents of Li. Journal of Materials Research, 34(15) (2019) 2714-2726.10.1557/jmr.2019.105 Search in Google Scholar

25. Thomas R.H, Czech M.J, Elmiligui A.A. Active Aircraft Pylon Noise Control System. US Patent LAR-TOPS-179. Search in Google Scholar

26. Structural blind fasteners. Flight Airworth Support Technology, (27) (2019) 26–9. Search in Google Scholar

27. Ferrer G, Chamfroy C, Dupouy. SS. A350 XWB composite repairs. Flight Airworth Support Technology, (2016) 32. Search in Google Scholar

28. Pora J. Advanced materials and technologies for A380 structure. Flight Airworth Support Technology, (2003) 32. Search in Google Scholar

29. A320 family (CFM56) familiarization course. Islamabad, Pakistan (2018). Search in Google Scholar

30. Kämpf P. Why not mount airliner jet engines above the wings? https://aviation.stackexchange.com/questions/9680/why-not-mount-airliner-jet-engines-above-the-wings. Search in Google Scholar

31. Heid T. The ABC’s of Engine Mount Inspection & Repair. Aviation Pros, (2000). Search in Google Scholar

32. Trent 900. Rolls-Royce. Search in Google Scholar

33. Morris H. Why planes fly at 35,000 feet: The reason for high altitude flights. Traveller, (2017). Search in Google Scholar

34. Acron Welding. Aircraft engine mounts- here’s what you need to know. Acron Welding, (2020). Search in Google Scholar

35. Investigation report A330 jetliners’ engine bleed air system failures: Serious Incidents on 11 and 22 December 2010. Helsinki, Finland (2012). Search in Google Scholar

36. Mitchell J. The galvanic series - the essential guide. Engineering Clicks, (2017). Search in Google Scholar

37. Aircraft & Composite Recycling. Boeing. environmental Technotes, 12(1) (2007) 1–4. Search in Google Scholar

38. Meilak J. How G-Force works. MiGFlug, (2018). Search in Google Scholar

39. Dubois P. Towards an efficient FDA Programme. Miami, USA (2016). Search in Google Scholar

40. Aviation Security Service. Maximum rate turns. Civil Aviation Authority New Zealand, (2020). Search in Google Scholar

41. Chen B, Li C.H, He S.C, Li X.L, Lu C. Corrosion behavior of 2099 Al-Li alloy in NaCl aqueous solution. Journal of Materials Research, 29(12) (2014) 1344-1353.10.1557/jmr.2014.121 Search in Google Scholar

42. Antunes R.A, de Oliveiraa M.C.L, Salvador C.A.F. Materials selection of optimized titanium alloys for aircraft applications. Materials Research, 21(2) (2017).10.1590/1980-5373-mr-2017-0979 Search in Google Scholar

43. Bylya O, Gomez-Gallegos A, Stefani N, Blackwell P. Al-Li alloys – the analysis of material behaviour during industrial hot forging. Procedia Engineering, 207 (2017) 7–12. Search in Google Scholar

44. Modlin C.T, Zipay J.J. The 1.5 & 1.4 ultimate factors of safety for aircraft & spacecraft - history, definition and applications. Aircraft structures for engineering students, (2014) 1–26. Search in Google Scholar

45. Wang G, Li J, Lv K, Zhang W, Ding X, Yang G, et al. Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration. Scientific Reports 6(1) (2016) 1-13.10.1038/srep31769499288827546196 Search in Google Scholar

46. Atmospheric Corrosion of Aluminum Alloys. Total Materia, (2014). Search in Google Scholar

47. Aluminium - Grades, Formability, Fabrication and Finishing. Aalco Metals Limited, Wednesbury, Great Britain, (2005). Search in Google Scholar

48. Mapelli C, Venturini R, Tagliabue C. Extrusion simulation of TI-6AL-4V for the production of special shaped cross sections. Metallurgical Science and Tecnology, 22(2) (2013) 14–20. Search in Google Scholar

49. Sheppard T. Extrusion of aluminium alloys. Springer Science and Business Media, (1999).10.1007/978-1-4757-3001-2 Search in Google Scholar

50. Boyer RR, Cotton J.D, Mohaghegh M, Schafrik R.E. Materials considerations for aerospace applications. MRS Bulletin, 40(12) (2015) 1055–65.10.1557/mrs.2015.278 Search in Google Scholar

51. Titanium Alloy: Ti-6Al-4V. Hebei Metals Industrial Limited, China (2016). Search in Google Scholar

52. AFG. Aluminium recycling – processes. Alum Futur Gener, 44(0) (2016) 0–3. Search in Google Scholar

53. Global Aluminium Recycling : A cornerstone of sustainable development. International Aluminum Institute, (2009) 1–36. Search in Google Scholar

54. Aluminium Alloy: Introduction to Aluminium and its Alloys. Aalco Metals Ltd. Wednesbury, (2019). Search in Google Scholar

55. Recycling stainless steel and aluminium: which has higher market value? Melbourne Metal Recycling, (2019). Search in Google Scholar

56. Mitropolskaya N, Briggs R. Boeing: The quest for stronger, cheaper titanium alloys. Boeing Innovation Quarterly, (2018). Search in Google Scholar

57. Knight C. Titanium recycling gives Europe a valuable new metal supply. Medium, 2018. Search in Google Scholar

58. Alexopoulos N.D, Migklis E, Stylianos A, Myriounis D.P. Fatigue behavior of the aeronautical Al-Li (2198) aluminum alloy under constant amplitude loading. International Journal of Fatigue, 56 (2013) 95-105. Search in Google Scholar

59. Sujata M, Madan M, Raghavendra K, Bhaumik SK. Fretting fatigue in aircraft components made of Ti-Al-V alloys. Procedia Engineering, 55 (2013) 481–486. Search in Google Scholar

60. Sen I, Gopinath K, Datta R, Ramamurty U. Fatigue in Ti-6Al-4V-B alloys. Acta Materialia, 58(20) (2010) 6799-6809.10.1016/j.actamat.2010.09.008 Search in Google Scholar

61. Wanhill R.J.H, Barter S.A. Executive summary (2009). www.nlr.nl. Search in Google Scholar

eISSN:
2083-4799
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Materials Sciences, Functional and Smart Materials