Acceso abierto

Mathematical Modeling of the Coupled Processes in Nanoporous Bodies


Cite

1. Abeyaratne R., Knowles J.K. (1991), Kinetic relations and the propagation of phase boundaries in solids, Archive for Rational Mechanics and Analysis, 114(2), 119–154.10.1007/BF00375400Search in Google Scholar

2. Aifantis E.C. (2011b), On the gradient approach–relation to Eringen’s nonlocal theory, International Journal of Engineering Science, 49(12), 1367–1377.10.1016/j.ijengsci.2011.03.016Search in Google Scholar

3. Aifantis E.C. (2011a), Gradient nanomechanics: applications to deformation, fracture, and diffusion in nanopolycrystals, Metallurgical and Materials Transactions A, 42(10), 2985.10.1007/s11661-011-0725-9Search in Google Scholar

4. Bao Y., Wen T., Samia A.C.S., Khandhar A., Krishnan K.M. (2016), Magnetic nanoparticles: material engineering and emerging applications in lithography and biomedicine, Journal of Materials Science, 51(1), 513–553.10.1007/s10853-015-9324-2Search in Google Scholar

5. Berezovski A., Engelbrecht J., Maugin G.A. (2007), Front dynamics in inhomogeneous solids. Proc. Estonian Acad. Sci. Phys. Math., 56(2), 155–161.10.3176/phys.math.2007.2.11Search in Google Scholar

6. Bhattacharya A., Calmidi V.V., Mahajan R.L. (2002), Thermo-physical properties of high porosity metal foams, International Journal of Heat and Mass Transfer, 45(5), 1017–1031.10.1016/S0017-9310(01)00220-4Search in Google Scholar

7. Biot M.A. (1941), General theory of three dimensional consolidation, Journal of Applied Physics, 12, 155–164.10.1063/1.1712886Search in Google Scholar

8. Bozhenko B., Nahirnyj T., Tchervinka K. (2016), To modeling admixtures influence on the size effects in a thin film, Mathematical Modeling and Computing, 3(1), 12–22.10.23939/mmc2016.01.012Search in Google Scholar

9. Burak Y.I., Nagirnyi T. (1992), Mathematical modeling of local gradient processes in inertial thermomechanical systems, International applied mechanics 28(12), 775–793.10.1007/BF00847314Search in Google Scholar

10. Charalambakis N. (2010), Homogenization techniques and micro-mechanics. A survey and perspectives, Applied Mechanics Reviews, 63(3), 030803.10.1115/1.4001911Search in Google Scholar

11. Coussy O. (2004), Poromechanics, John Wiley & Sons.10.1002/0470092718Search in Google Scholar

12. Dönmez A., Bažant Z.P. (2017), Size effect on punching strength of reinforced concrete slabs with and without shear reinforcement, ACI Structural Journal, 114(4), 875.10.14359/51689719Search in Google Scholar

13. Elliott J.A. (2011), Novel approaches to multiscale modelling in materials science, International Materials Reviews, 56(4), 207–225.10.1179/1743280410Y.0000000002Search in Google Scholar

14. Eringen A.C. (2002), Nonlocal continuum field theories, Springer Science & Business Media.Search in Google Scholar

15. Eringen A.C., Edelen D.G.B. (1972), On nonlocal elasticity, International Journal of Engineering Science, 10(3), 233–248.10.1016/0020-7225(72)90039-0Search in Google Scholar

16. Geers M.G., Kouznetsova V., Brekelmans W.M. (2002), Multi-scale constitutive modelling of heterogeneous materials with a gradient-enhanced computational homogenization scheme, International Journal for Numerical Methods in Engineering, 54(8), 1235–1260.10.1002/nme.541Search in Google Scholar

17. Geers M.G.D., De Borst R., Peerlings R.H.J., Brekelmans W.A.M. (2001), A critical comparison of nonlocal and gradient-enhanced softening continua, International Journal of Solids and Structures, 38(44), 7723–7746.10.1016/S0020-7683(01)00087-7Search in Google Scholar

18. Hu H., Onyebueke L., Abatan A. (2010), Characterizing and modeling mechanical properties of nanocomposites-review and evaluation, Journal of Minerals and Materials Characterization and Engineering, 9(04), 275.10.4236/jmmce.2010.94022Search in Google Scholar

19. Kachanov M., Sevostianov I. (2018), Quantitative Characterization of Microstructures in the Context of Effective Properties, In Micromechanics of Materials, with Applications (pp. 89–126), Springer, Cham.10.1007/978-3-319-76204-3_2Search in Google Scholar

20. Kalamkarov A.L., Andrianov I.V., Danishevsâ V.V. (2009), Asymptotic homogenization of composite materials and structures, Applied Mechanics Reviews, 62(3), 030802.10.1115/1.3090830Search in Google Scholar

21. Markov K.Z. (2000), Elementary micromechanics of heterogeneous media, In Heterogeneous Media (pp. 1–162), Birkhäuser, Boston, MA.10.1007/978-1-4612-1332-1_1Search in Google Scholar

22. Maugin G.A. (1979), Nonlocal theories or gradient-type theories-a matter of convenience, Archiv of Mechanics, Archiwum Mechaniki Stosowanej, 31, 15–26.Search in Google Scholar

23. Nahirnyj T., Tchervinka K. (2012), Thermodynamical models and methods of thermomechanics taking into account nearsurface and structural nonhomogeneity. Bases of nanomechanics I, Spolom, Lviv (In Ukrainian).Search in Google Scholar

24. Nahirnyj T., Tchervinka K. (2013), Structural inhomogeneity and size effects in thermoelastic solids, J. Coupled Syst. Multiscale Dyn., 1, 216–223.10.1166/jcsmd.2013.1015Search in Google Scholar

25. Nahirnyj T., Tchervinka K. (2014), Basics of mechanics of local non-homogeneous elastic bodies. Bases of nanomechanics II, Rastr-7, Lviv (In Ukrainian).Search in Google Scholar

26. Nahirnyj T., Tchervinka K. (2015), Mathematical Modeling of Structural and Near-Surface Non-Homogeneities in Thermoelastic Thin Films, International Journal of Engineering Science, 91, 49–62.10.1016/j.ijengsci.2015.02.001Search in Google Scholar

27. Pindera M.J., Khatam H., Drago A.S., Bansal Y. (2009), Microme-chanics of spatially uniform heterogeneous media: a critical review and emerging approaches, Composites Part B: Engineering, 40(5), 349–378.10.1016/j.compositesb.2009.03.007Search in Google Scholar

28. Polizzotto C. (2003), Unified thermodynamic framework for nonlocal / gradient continuum theories, European Journal of Mechanics-A / Solids, 22(5), 651–668.10.1016/S0997-7538(03)00075-5Search in Google Scholar

29. Rabotnov Yu.N. (1980), Elements of Hereditary Solid Mechanics, Mir Publ. Moscow (in Russian).Search in Google Scholar

30. Rafii-Tabar H., Ghavanloo E., Fazelzadeh S.A. (2016), Nonlocal continuum-based modeling of mechanical characteristics of nanoscopic structures, Physics Reports, 638, 1–97.10.1016/j.physrep.2016.05.003Search in Google Scholar

31. Rosakis P., Knowles J.K. (1997), Unstable kinetic relations and the dynamics of solid-solid phase transitions, Journal of the Mechanics and Physics of Solids, 45(11), 2055–2081.10.1016/S0022-5096(97)00026-4Search in Google Scholar

32. Tappan B.C., Steiner S.A., Luther E.P. (2010), Nanoporous metal foams, Angewandte Chemie International Edition, 49(27), 4544–4565.10.1002/anie.200902994Search in Google Scholar

33. Vafai K. (2015), Handbook of porous media, Crc Press.10.1201/b18614Search in Google Scholar

34. Wang Y.M., Ma E. (2009), Mechanical properties of bulk nanostructured metals, Bulk Nanostructured Materials, 423–453.10.1002/9783527626892.ch19Search in Google Scholar

35. Woźniak C. (1987), A nonstandard method of modelling of thermo-elastic periodic composites, International Journal of Engineering Science, 25(5), 483-498.10.1016/0020-7225(87)90102-9Search in Google Scholar

36. Young R., Kinloch I.A., Gong L., Novoselov K.S. (2012), The mechanics of graphene nanocomposites: a review, Composites Science and Technology, 72(12), 1459–1476.10.1016/j.compscitech.2012.05.005Search in Google Scholar