Cite

Alhussien M.N., Kamboj A., Aljader M.A., Panda B.S.K., Yadav M.L., Sharma L., Mohammed S., Sheikh A.A., Lotfan M., Kapila R., Mohanty A.K., Dang A.K. (2018). Effect of tropical thermal stress on peri-implantation immune responses in cows. Theriogenology, 114: 149–15810.1016/j.theriogenology.2018.03.036Search in Google Scholar

Ayalon N. (1978). A review of embryonic mortality in cattle. J. Reprod. Fertil., 54: 483–493.10.1530/jrf.0.0540483Search in Google Scholar

Binelli M., Subramaniam P., Diaz T., Johnson G.A., Hansen T.R., Badinga L., Thatcher W.W. (2001). Bovine interferon-tau stimulates the Janus kinase-signal transducer and activator of transcription pathway in bovine endometrial epithelial cells. Biol. Reprod., 64: 654–665.10.1095/biolreprod64.2.654Search in Google Scholar

Bridges G.A., Day M.L., Geary T.W., Cruppe L.H. (2013). Triennial Reproduction Symposium: deficiencies in the uterine environment and failure to support embryonic development. J. Anim. Sci., 91: 3002–3013.10.2527/jas.2013-5882Search in Google Scholar

Carter F., Forde N., Duffy P., Wade M., Fair T., Crowe M.A., Evans A.C., Kenny D.A., Roche J.F., Lonergan P. (2008). Effect of increasing progesterone concentration from Day 3 of pregnancy on subsequent embryo survival and development in beef heifers. Reprod. Fert. Develop., 20: 368–375.10.1071/RD07204Search in Google Scholar

Chomczynski P., Sacchi N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate phenol chloroform extraction. Anal. Biochem., 162: 156–159.10.1016/0003-2697(87)90021-2Search in Google Scholar

Clemente M., de La Fuente J., Fair T., Al Naib A., Gutierrez-Adan A., Roche J. F., Rizos D., Lonergan P. (2009). Progesterone and conceptus elongation in cattle: a direct effect on the embryo or an indirect effect via the endometrium? Reproduction, 138: 507–517.10.1530/REP-09-0152Search in Google Scholar

Committee on Bovine Reproductive Nomenclature (1972). Recommendations for standardizing bovine reproductive terms. Cornell Vet., 62: 216–237.Search in Google Scholar

Forde N., Carter F., Fair T., Crowe M.A., Evans A.C., Spencer T.E., Bazer F.W., Mc-Bride R., Boland M.P., O ’ Gaora P., Lonergan P., Roche J.F. (2009). Progesterone-regulated changes in endometrial gene expression contribute to advanced conceptus development in cattle. Biol. Reprod., 81: 784–794.10.1095/biolreprod.108.074336Search in Google Scholar

Forde N., Spencer T.E., Bazer F.W., Song G., Roche J.F., Lonergan P. (2010). Effect of pregnancy and progesterone concentration on expression of genes encoding for transporters or secreted proteins in the bovine endometrium. Physiol. Genomics, 41: 53–62.10.1152/physiolgenomics.00162.2009Search in Google Scholar

Forde N., Duffy G.B., McGettigan P.A., Browne J.A., Mehta J.P., Kelly A.K., Mansouri-Attia N., Sandra O., Loftus B.J., Crowe M.A., Fair T., Roche J.F., Lonergan P., Evans A.C. (2012). Evidence for an early endometrial response to pregnancy in cattle: both dependent upon and independent of interferon tau. Physiol. Genomics, 44: 799–810.10.1152/physiolgenomics.00067.2012Search in Google Scholar

Friedman E., Roth Z., Voet H., Lavon Y., Wolfenson D. (2012). Progesterone supplementation postinsemination improves fertility of cooled dairy cows during the summer. J. Dairy Sci., 95: 3092–3099.10.3168/jds.2011-5017Search in Google Scholar

García-Ispierto I., López-Gatius F. (2012). Effects of GnRH or progesterone treatment on day 5 post-AI on plasma progesterone, luteal blood flow and leucocyte counts during the luteal phase in dairy cows. Reprod. Domest. Anim., 47: 224–229.10.1111/j.1439-0531.2011.01832.xSearch in Google Scholar

García-Ispierto I., López-Gatius F. (2014). Effects of different five-day progesterone-based fixed-time AI protocols on follicular/luteal dynamics and fertility in dairy cows. J. Reprod. Dev., 60: 426–432.10.1262/jrd.2014-063Search in Google Scholar

García-Ispierto I., López-Gatius F. (2017). Progesterone supplementation in the early luteal phase after artificial insemination improves conception rates in high-producing dairy cows. Theriogenology, 90: 20–24.10.1016/j.theriogenology.2016.11.006Search in Google Scholar

García-Ispierto I., López-Helguera I., Serrano-Pérez B., Paso V., Tuono T., Ramon A., Mur-Novales R., Tutusaus J., López-Gatius F. (2016). Progesterone supplementation during the time of pregnancy recognition after artificial insemination improves conception rates in high-producing dairy cows. Theriogenology, 85: 1343–1347.10.1016/j.theriogenology.2015.12.021Search in Google Scholar

Garrett J.E., Geisert R.D., Zavy M.T., Morgan G.L. (1988). Evidence for maternal regulation of early conceptus growth and development in beef cattle. J. Reprod. Fertil., 84: 437–446.10.1530/jrf.0.0840437Search in Google Scholar

Gifford C.A., Racicot K., Clark D.S., Austin K.J., Hansen T.R., Lucy M.C., Davies C.J., Ott T.L. (2007). Regulation of interferon-stimulated genes in peripheral blood leukocytes in pregnant and bred, nonpregnant dairy cows. J. Dairy Sci., 90: 274–280.10.3168/jds.S0022-0302(07)72628-0Search in Google Scholar

Green J.C., Okamura C.S., Poock S.E., Lucy M.C. (2010). Measurement of interferon-tau (IFN-tau) stimulated gene expression in blood leukocytes for pregnancy diagnosis within 18–20d after insemination in dairy cattle. Anim. Reprod. Sci., 121: 24–33.10.1016/j.anireprosci.2010.05.010Search in Google Scholar

Guillomot M., Fléchon J.E., Leroy F. (1993). Blastocyst development and implantation. In: Reproduction in mammals and man, Thibault C., Levasseur M.C., Hunter R.H.F. (eds). Paris, Ellipses, pp. 387–410.Search in Google Scholar

Han H., Austin K.J., Rempel L.A., Hansen T.R. (2006). Low blood ISG15 mRNA and progesterone levels are predictive of non-pregnant dairy cows. J. Endocrinol., 191: 505–512.10.1677/joe.1.07015Search in Google Scholar

Hansen P.J. (2007). Hidden factors affecting fertility. WCDS Advances in Dairy Technology 19: 339–349.Search in Google Scholar

King G.J., Atkinson B.A., Robertson H.A. (1980). Development of the bovine placentome from days 20 to 29 of gestation. J. Reprod. Fertil., 59: 95–100.10.1530/jrf.0.0590095Search in Google Scholar

King G.J., Atkinson B.A., Robertson H.A. (1981). Development of the intercaruncular areas during early gestation and establishment of the bovine placenta. J. Reprod. Fertil., 61: 469–474.10.1530/jrf.0.0610469Search in Google Scholar

Klein C., Bauersachs S., Ulbrich S.E., Einspanier R., Meyer H.H., Schmidt S.E., Reichenbach H.D., Vermehren M., Sinowatz F., Blum H., Wolf E. (2006). Monozygotic twin model reveals novel embryo-induced transcriptome changes of bovine endometrium in the preattachment period. Biol. Reprod., 74: 253–264.10.1095/biolreprod.105.046748Search in Google Scholar

Kose M., Kaya M.S., Aydilek N., Kucukaslan I., Bayril T., Bademkiran S., Kima Z., Ozyurtlu N., Kayis S.A., Guzeloglu A., Atli M.O. (2016). Expression profile of interferon tau-stimulated genes in ovine peripheral blood leukocytes during embryonic death. Theriogenology, 85: 1161–1166.10.1016/j.theriogenology.2015.11.032Search in Google Scholar

Lonergan P., Forde N., Spencer T.E. (2016). Role of progesterone in embryo development in cattle. Reprod. Fertil. Dev., 28: 66–74.10.1071/RD15326Search in Google Scholar

López-Gatius F. (2003). Is fertility declining in dairy cattle? A retrospective study in northeastern Spain. Theriogenology, 60: 89–99.10.1016/S0093-691X(02)01359-6Search in Google Scholar

López-Gatius F. (2012). Factors of a noninfectious nature affecting fertility after artificial insemination in lactating dairy cows. A review. Theriogenology, 77: 1029–1041.10.1016/j.theriogenology.2011.10.014Search in Google Scholar

López-Gatius F., García-Ispierto I. (2010). Ultrasound and endocrine findings that help to assess the risk of late embryo/early foetal loss by non-infectious cause in dairy cattle. Reprod. Domest. Anim., 45: 15–24.10.1111/j.1439-0531.2010.01620.xSearch in Google Scholar

López-Gatius F., Hunter R.H.F. (2017). From pre-ovulatory follicle palpation to the challenge of twin pregnancies: Clinical reflections following one million gynaecological examinations in dairy cows. Reprod. Domest. Anim., 52: 4–11.10.1111/rda.13041Search in Google Scholar

López-Gatius F., Labèrnia J., Santolaria P., López-Béjar M., Rutllant J. (1996). Effect of reproductive disorders previous to conception on pregnancy attrition in dairy cows, Theriogenology, 46: 643–648.10.1016/0093-691X(96)00215-4Search in Google Scholar

López-Gatius F., García-Ispierto I., Santolaria P., Yániz J., Nogareda C., López-Béjar M. (2006). Screening for high fertility in high-producing dairy cows. Theriogenology, 65: 1678–1689.10.1016/j.theriogenology.2005.09.027Search in Google Scholar

López-Gatius F., Garbayo J.M., Santolaria P., Yániz J., Ayad A., de Sousa N.M., Beckers J.F. (2007). Milk production correlates negatively with plasma levels of pregnancy-associated glycoprotein (PAG) during the early foetal period in high producing dairy cows with live fetuses. Domest. Anim. Endocrinol., 32: 29–42.10.1016/j.domaniend.2005.12.007Search in Google Scholar

Lucy M.C. (2001). Reproductive loss in high-producing dairy cattle: where will it end? J. Dairy Sci., 84: 1277–1293.10.3168/jds.S0022-0302(01)70158-0Search in Google Scholar

Manjari P., Reddi S., Alhussien M., Mohammed S., De S., Mohanty A.K., Sivalingam J., Dang A.K. (2016). Neutrophil gene dynamics and plasma cytokine levels in dairy cattle during peri-implantation period. Vet. Immunol. Immunopathol., 173: 44–49.10.1016/j.vetimm.2016.03.017Search in Google Scholar

Mann G.E., Lamming G.E. (2001). Relationship between maternal endocrine environment, early embryo development and inhibition of the luteolytic mechanism in cows. Reproduction, 121: 175–180.10.1530/rep.0.1210175Search in Google Scholar

Mann G.E., Fray M.D., Lamming G.E. (2006). Effects of time of progesterone supplementation on embryo development and interferon-tau production in the cow. Vet J., 171: 500–503.10.1016/j.tvjl.2004.12.005Search in Google Scholar

Matsuyama S., Kojima T., Kato S., Kimura K. (2012). Relationship between quantity of IFNT estimated by IFN-stimulated gene expression in peripheral blood mononuclear cells and bovine embryonic mortality after AI or ET. Reprod. Biol. Endocrinol., 10: 21.10.1186/1477-7827-10-21Search in Google Scholar

Meyerholz M.M., Mense K., Knaack H., Sandra O., Schmicke M. (2016). Pregnancy-induced ISG-15 and MX-1 gene expression is detected in the liver of Holstein-Friesian heifers during late peri-implantation period. Reprod. Domest. Anim., 51: 175–177.10.1111/rda.12638Search in Google Scholar

Monteiro P.L. Jr., Ribeiro E.S., Maciel R.P., Dias A.L., Solé E. Jr., Lima F.S., Bisinotto R.S., Thatcher W.W., Sartori R., Santos J.E. (2014). Effects of supplemental progesterone after artificial insemination on expression of interferon-stimulated genes and fertility in dairy cows. J. Dairy Sci., 97: 4907–4921.10.3168/jds.2013-7802Search in Google Scholar

Monteiro P.L. Jr., Nascimento A.B., Pontes G.C., Fernandes G.O., Melo L.F., Wiltbank M.C., Sartori R. (2015). Progesterone supplementation after ovulation: effects on corpus luteum function and on fertility of dairy cows subjected to AI or ET. Theriogenology, 84: 1215–1224.10.1016/j.theriogenology.2015.06.023Search in Google Scholar

Paradis F., Yue S., Grant J.R., Stothard P., Basarab J.A., Fitzsimmons C. (2015). Transcriptomic analysis by RNA sequencing reveals that hepatic interferon-induced genes may be associated with feed efficiency in beef heifers. J. Anim. Sci., 93: 3331–3341.10.2527/jas.2015-8975Search in Google Scholar

Parr M.H., Crowe M.A., Lonergan P., Evans A.C., Rizos D., Diskin M.G. (2014). Effect of exogenous progesterone supplementation in the early luteal phase post-insemination on pregnancy per artificial insemination in Holstein-Friesian cows. Anim. Reprod. Sci., 150: 7–14.10.1016/j.anireprosci.2014.08.008Search in Google Scholar

Peter A.T., Beg M.A., Ahmad E., Bergfelt D.R. (2017). Trophoblast of domestic and companion animals: basic and applied clinical perspectives. Anim. Reprod., 14: 1209–1224.10.21451/1984-3143-AR973Search in Google Scholar

Pugliesi G., Miagawa B.T., Paiva Y.N., França M.R., Silva L.A., Binelli M. (2014). Conceptus-induced changes in the gene expression of blood immune cells and the ultrasound-accessed luteal function in beef cattle: how early can we detect pregnancy? Biol. Reprod., 91: 95.10.1095/biolreprod.114.121525Search in Google Scholar

Ribeiro E.S., Bruno R.G., Farias A.M., Hernández-Rivera J.A., Gomes G.C., Surjus R., Becker L.F., Birt A., Ott T.L, Branen J.R., Sasser R.G., Keisler D.H., Thatcher W.W., Bilby T.R., Santos J.E. (2014). Low doses of bovine somatotropin enhance conceptus development and fertility in lactating dairy cows. Biol. Reprod., 90: 10.10.1095/biolreprod.113.114694Search in Google Scholar

Ribeiro E.S., Gomes G., Greco L.F., Cerri R.L., Vieira-Neto A., Monteiro P.L. Jr., Lima F.S., Bisinotto R.S., Thatcher W.W., Santos J.E. (2016). Carryover effect of postpartum inflammatory diseases on developmental biology and fertility in lactating dairy cows. J. Dairy Sci., 99: 2201–2220.10.3168/jds.2015-10337Search in Google Scholar

Roberts R.M., Leaman D.W., Cross J.C. (1992). Role of interferons in maternal recognition of pregnancy in ruminants. Proc. Soc. Exp. Biol. Med., 200: 7–18.10.3181/00379727-200-43387ASearch in Google Scholar

Ruhmann B., Giller K., Hankele A.K., Ulbrich S.E., Schmicke M. (2017). Interferon-τ induced gene expression in bovine hepatocytes during early pregnancy. Theriogenology, 104: 198–204.10.1016/j.theriogenology.2017.07.051Search in Google Scholar

Serrano-Pérez B., Hansen P.J., Mur-Novales R., García-Ispierto I., de Sousa N.M., Beckers J.F., Almería S., López-Gatius F. (2016). Crosstalk between uterine serpin (SERPINA14) and pregnancy-associated glycoproteins at the foetal-maternal interface in pregnant dairy heifers experimentally infected with Neospora caninum. Theriogenology, 86: 824–830.10.1016/j.theriogenology.2016.03.003Search in Google Scholar

Shirasuna K., Matsumoto H., Kobayashi E., Nitta A., Haneda S., Matsui M., Kawashima C., Kida K., Shimizu T., Miyamoto A. (2012). Upregulation of interferon-stimulated genes and interleukin-10 in peripheral blood immune cells during early pregnancy in dairy cows. J. Reprod. Dev., 58: 84–90.10.1262/jrd.11-094KSearch in Google Scholar

Spencer T.E., Johnson G.A., Bazer F.W., Burghardt R.C., Palmarini M. (2007). Pregnancy recognition and conceptus implantation in domestic ruminants: roles of progesterone, interferons and endogenous retroviruses. Reprod. Fert. Develop., 19: 65–78.10.1071/RD06102Search in Google Scholar

Spencer T.E., Forde N., Lonergan P. (2016). The role of progesterone and conceptus-derived factors in uterine biology during early pregnancy in ruminants. J. Dairy Sci., 99: 5941–5950.10.3168/jds.2015-10070Search in Google Scholar

Stevenson J.S., Portaluppi M.A., Tenhouse D.E., Lloyd A., Eborn D.R., Kacuba S., De Jarnette J.M. (2007). Interventions after artificial insemination: conception rates, pregnancy survival, and ovarian responses to gonadotropin-releasing hormone, human chorionic gonadotropin, and progesterone. J. Dairy Sci., 90: 331–340.10.3168/jds.S0022-0302(07)72634-6Search in Google Scholar

Wijma R., Stangaferro M.L., Kamat M.M., Vasudevan S., Ott T.L., Giordano J.O. (2016). Embryo mortality around the period of maintenance of the corpus luteum causes alterations to the ovarian function of lactating dairy cows. Biol. Reprod., 95: 112.10.1095/biolreprod.116.142075Search in Google Scholar

Yan L., Robinson R., Shi Z., Mann G. (2016). Efficacy of progesterone supplementation during early pregnancy in cows: a meta-analysis. Theriogenology, 85: 1390–1398.10.1016/j.theriogenology.2015.12.027Search in Google Scholar

Yuan J.S., Reed A., Chen F., Stewart C.N. Jr. (2006). Statistical analysis of real-time PCR data. BMC Bioinformatics, 7: 85.10.1186/1471-2105-7-85Search in Google Scholar

eISSN:
2300-8733
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine