Cite

Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Aust Med J 1869; 14: 146-7.AshworthTA case of cancer in which cells similar to those in the tumours were seen in the blood after deathAust Med J1869141467Search in Google Scholar

Riethdorf S, Pantel K. Disseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterization. Pathobiology 2008; 75: 140-8. 10.1159/000123852RiethdorfSPantelKDisseminated tumor cells in bone marrow and circulating tumor cells in blood of breast cancer patients: current state of detection and characterizationPathobiology200875140810.1159/00012385218544969Open DOISearch in Google Scholar

Butler TP, Gullino PM. Quantitation of cell shedding into efferent blood of mammary adenocarcinoma. Cancer Res 1975; 35: 512-6. PMID: 1090362ButlerTPGullinoPMQuantitation of cell shedding into efferent blood of mammary adenocarcinomaCancer Res1975355126PMID: 1090362Search in Google Scholar

Fabisiewicz A, Grzybowska E. CTC clusters in cancer progression and metastasis. Med Oncol 2017; 34: 12. 10.1007/s12032-016-0875-0FabisiewiczAGrzybowskaECTC clusters in cancer progression and metastasisMed Oncol2017341210.1007/s12032-016-0875-028012133Open DOISearch in Google Scholar

Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell 2014; 158: 1110-22. 10.1016/j.cell.2014.07.013AcetoNBardiaAMiyamotoDTDonaldsonMCWittnerBSSpencerJAet alCirculating tumor cell clusters are oligoclonal precursors of breast cancer metastasisCell201415811102210.1016/j.cell.2014.07.013414975325171411Open DOISearch in Google Scholar

Cheung KJ, Padmanaban V, Silvestri V, Schipper K ,Cohen JD, Fairchild AN, et al. Polyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clusters. Proc Natl Acad Sci 2016; 113: E854-63. 10.1073/pnas.1508541113CheungKJPadmanabanVSilvestriVSchipperKCohenJDFairchildANet alPolyclonal breast cancer metastases arise from collective dissemination of keratin 14-expressing tumor cell clustersProc Natl Acad Sci2016113E8546310.1073/pnas.1508541113476378326831077Open DOISearch in Google Scholar

Giampieri S, Manning C, Hooper S, Jones L, Hill CS, Sahai E. Localized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motility. Nat Cell Biol 2009; 11: 1287-96. 10.1038/ncb1973GiampieriSManningCHooperSJonesLHillCSSahaiELocalized and reversible TGFβ signalling switches breast cancer cells from cohesive to single cell motilityNat Cell Biol20091112879610.1038/ncb1973277324119838175Open DOISearch in Google Scholar

Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009; 119: 1420-8. 10.1172/JCI39104KalluriRWeinbergRAThe basics of epithelial-mesenchymal transitionJ Clin Invest20091191420810.1172/JCI39104268910119487818Open DOISearch in Google Scholar

Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 2006; 7: 131-42. 10.1038/nrm1835ThieryJPSleemanJPComplex networks orchestrate epithelial-mesenchymal transitionsNat Rev Mol Cell Biol200671314210.1038/nrm183516493418Open DOISearch in Google Scholar

Kumar S, Das A, Sen S. Extracellular matrix density promotes EMT by weakening cell-cell adhesions. Mol Biosyst 2014; 10: 838-50. 10.1039/c3mb70431aKumarSDasASenSExtracellular matrix density promotes EMT by weakening cell-cell adhesionsMol Biosyst2014108385010.1039/c3mb70431a24481128Open DOISearch in Google Scholar

Craene B De, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer 2013; 13: 97-110. 10.1038/nrc3447CraeneB DeBerxGRegulatory networks defining EMT during cancer initiation and progressionNat Rev Cancer2013139711010.1038/nrc344723344542Open DOISearch in Google Scholar

Yao D, Dai C, Peng S. Mechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formation. Mol Cancer Res 2011; 9: 1608-20. 10.1158/1541-7786.MCR-10-0568YaoDDaiCPengSMechanism of the mesenchymal-epithelial transition and its relationship with metastatic tumor formationMol Cancer Res2011916082010.1158/1541-7786.MCR-10-056821840933Open DOISearch in Google Scholar

Jolly MK, Boareto M, Huang B, Jia D, Lu M, Ben-Jacob E, et al. Implications of the hybrid epithelial/mesenchymal phenotype in metastasis. Front Oncol 2015; 5: 155. 10.3389/fonc.2015.00155JollyMKBoaretoMHuangBJiaDLuMBen-JacobEet alImplications of the hybrid epithelial/mesenchymal phenotype in metastasisFront Oncol2015515510.3389/fonc.2015.00155Open DOISearch in Google Scholar

Lecharpentier A, Vielh P, Perez-Moreno P, Planchard D, Soria JC, Farace F. Detection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancer. Br J Cancer 2011; 105: 1338-41. 10.1038/bjc.2011.405LecharpentierAVielhPPerez-MorenoPPlanchardDSoriaJCFaraceFDetection of circulating tumour cells with a hybrid (epithelial/mesenchymal) phenotype in patients with metastatic non-small cell lung cancerBr J Cancer201110513384110.1038/bjc.2011.405Open DOISearch in Google Scholar

Armstrong AJ, Marengo MS, Oltean S, Kemeny G, Bitting RL, Turnbull JD, et al. Circulating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markers. Mol Cancer Res 2011; 9: 997-1007. 10.1158/1541-7786.MCR-10-0490ArmstrongAJMarengoMSOlteanSKemenyGBittingRLTurnbullJDet alCirculating tumor cells from patients with advanced prostate and breast cancer display both epithelial and mesenchymal markersMol Cancer Res20119997100710.1158/1541-7786.MCR-10-0490Open DOISearch in Google Scholar

Grosse-Wilde A, Fouquier d’Hérouël A, McIntosh E, Ertaylan G, Skupin A, Kuestner RE, et al. Stemness of the hybrid epithelial/mesenchymal atate in breast cancer and its association with poor survival. PLoS One 2015; 10: e0126522. 10.1371/journal.pone.0126522Grosse-WildeAFouquierd’Hérouël AMcIntoshEErtaylanGSkupinAKuestnerREet alStemness of the hybrid epithelial/mesenchymal atate in breast cancer and its association with poor survivalPLoS One201510e012652210.1371/journal.pone.0126522Open DOISearch in Google Scholar

Jolly MK, Mani SA, Levine H. Hybrid epithelial/mesenchymal phenotype(s): the “fittest” for metastasis? Biochim Biophys Acta 2018; 870: 151-7. 10.1016/j.bbcan.2018.07.001JollyMKManiSALevineHHybrid epithelial/mesenchymal phenotype(s): the “fittest” for metastasis?Biochim Biophys Acta2018870151710.1016/j.bbcan.2018.07.001Open DOISearch in Google Scholar

Wong SY, Hynes RO. Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle 2006; 5: 812-7. 10.4161/cc.5.8.2646WongSYHynesROLymphatic or hematogenous dissemination: how does a metastatic tumor cell decide?Cell Cycle20065812710.4161/cc.5.8.2646Open DOISearch in Google Scholar

Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell 2017; 168: 670-91. 10.1016/j.cell.2016.11.037LambertAWPattabiramanDRWeinbergRAEmerging biological principles of metastasisCell20171686709110.1016/j.cell.2016.11.037Open DOISearch in Google Scholar

Bockhorn M, Jain RK, Munn LL. Active versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed? Lancet Oncol 2007; 8: 444-8. 10.1016/S1470-2045(07)70140-7BockhornMJainRKMunnLLActive versus passive mechanisms in metastasis: do cancer cells crawl into vessels, or are they pushed?Lancet Oncol20078444810.1016/S1470-2045(07)70140-7Open DOISearch in Google Scholar

Huang Q, Hu X, He W, Zhao Y, Hao S, Wu Q, et al. Fluid shear stress and tumor metastasis. Am J Cancer Res 2018; 8: 763-77. PMID: 29888101HuangQHuXHeWZhaoYHaoSWuQet alFluid shear stress and tumor metastasisAm J Cancer Res2018876377PMID: 29888101Search in Google Scholar

Stott SL, Lee RJ, Nagrath S, Yu M, Miyamoto DT, Ulkus L, et al. Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2010; 2: 25ra23. 10.1126/scitranslmed.3000403StottSLLeeRJNagrathSYuMMiyamotoDTUlkusLet alIsolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancerSci Transl Med2010225ra2310.1126/scitranslmed.3000403314129220424012Open DOISearch in Google Scholar

Lou X-L, Sun J, Gong S-Q, Yu X-F, Gong R, Deng H. Interaction between circulating cancer cells and platelets: clinical implication. Chin J Cancer Res 2015; 27: 450-60. 10.3978/j.issn.1000-9604.2015.04.10LouX-LSunJGongS-QYuX-FGongRDengHInteraction between circulating cancer cells and platelets: clinical implicationChin J Cancer Res2015274506010.3978/j.issn.1000-9604.2015.04.10462681626543331Open DOISearch in Google Scholar

Labelle M, Hynes RO. The initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous dissemination. Cancer Discov 2012; 2: 1091-9. 10.1158/2159-8290.CD-12-0329LabelleMHynesROThe initial hours of metastasis: the importance of cooperative host-tumor cell interactions during hematogenous disseminationCancer Discov201221091910.1158/2159-8290.CD-12-0329354099223166151Open DOISearch in Google Scholar

Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999; 59: 1295-300. PMID: 10096562NieswandtBHafnerMEchtenacherBMännelDNLysis of tumor cells by natural killer cells in mice is impeded by plateletsCancer Res1999591295300PMID: 10096562Search in Google Scholar

Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood 2015; 126: 582-8. 10.1182/blood-2014-08-531582FrancoATCorkenAWareJPlatelets at the interface of thrombosis, inflammation, and cancerBlood2015126582810.1182/blood-2014-08-531582452087526109205Open DOISearch in Google Scholar

Placke T, Orgel M, Schaller M, Jung G, Rammensee HG, Kopp HG, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 2012; 72: 440-8. 10.1158/0008-5472.CAN-11-1872PlackeTOrgelMSchallerMJungGRammenseeHGKoppHGet alPlatelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cellsCancer Res201272440810.1158/0008-5472.CAN-11-187222127925Open DOISearch in Google Scholar

Kopp H-G, Placke T, Salih HR. Platelet-derived transforming growth factor - down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res 2009; 69: 7775-83. 10.1158/0008-5472.CAN-09-2123KoppH-GPlackeTSalihHRPlatelet-derived transforming growth factor - down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivityCancer Res20096977758310.1158/0008-5472.CAN-09-212319738039Open DOISearch in Google Scholar

Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell 2011; 20: 576-90. 10.1016/j.ccr.2011.09.009LabelleMBegumSHynesRODirect signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasisCancer Cell2011205769010.1016/j.ccr.2011.09.009348710822094253Open DOISearch in Google Scholar

Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases - elimination, equilibrium and escape. Curr Opin Immunol 2014; 27: 16-25. 10.1016/j.coi.2014.01.004MittalDGubinMMSchreiberRDSmythMJNew insights into cancer immunoediting and its three component phases - elimination, equilibrium and escapeCurr Opin Immunol201427162510.1016/j.coi.2014.01.004438831024531241Open DOISearch in Google Scholar

Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E, et al. Immune evasion in cancer: mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35: S185-98. 10.1016/j.semcancer.2015.03.004VinayDSRyanEPPawelecGTalibWHStaggJElkordEet alImmune evasion in cancer: mechanistic basis and therapeutic strategiesSemin Cancer Biol201535S1859810.1016/j.semcancer.2015.03.00425818339Open DOISearch in Google Scholar

Hiratsuka S, Watanabe A, Aburatani H, Maru Y. Tumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasis. Nat Cell Biol 2006; 8: 1369-75. 10.1038/ncb1507HiratsukaSWatanabeAAburataniHMaruYTumour-mediated upregulation of chemoattractants and recruitment of myeloid cells predetermines lung metastasisNat Cell Biol2006813697510.1038/ncb150717128264Open DOISearch in Google Scholar

Kim S, Takahashi H, Lin W-W, Descargues P, Grivennikov S, Kim Y, et al. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 2009; 457: 102-6. 10.1038/nature07623KimSTakahashiHLinW-WDescarguesPGrivennikovSKimYet alCarcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasisNature2009457102610.1038/nature07623274643219122641Open DOISearch in Google Scholar

Szczerba BM, Castro-Giner F, Vetter M, Krol I, Gkountela S, Landin J, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression. Nature 1566: 553-7. 10.1038/s41586-019-0915-ySzczerbaBMCastro-GinerFVetterMKrolIGkountelaSLandinJet alNeutrophils escort circulating tumour cells to enable cell cycle progressionNature1566553710.1038/s41586-019-0915-y30728496Open DOISearch in Google Scholar

Hanna N. Role of natural killer cells in control of cancer metastasis. Cancer Metastasis Rev 1982; 1:45-64.HannaNRole of natural killer cells in control of cancer metastasisCancer Metastasis Rev19821456410.1007/BF000494807185419Search in Google Scholar

Brodbeck T, Nehmann N, Bethge A, Wedemann G, Schumacher U. Perforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse model. Mol Cancer 2014; 13: 244. 10.1186/14764598-13-244BrodbeckTNehmannNBethgeAWedemannGSchumacherUPerforin-dependent direct cytotoxicity in natural killer cells induces considerable knockdown of spontaneous lung metastases and computer modelling-proven tumor cell dormancy in a HT29 human colon cancer xenograft mouse modelMol Cancer20141324410.1186/14764598-13-244Open DOISearch in Google Scholar

Santos MF, Mannam VKR, Craft BS, Puneky LV, Sheehan NT, Lewis RE, et al. Comparative analysis of innate immune system function in metastatic breast, colorectal, and prostate cancer patients with circulating tumor cells. Exp Mol Pathol 2014; 96: 367-74. 10.1016/j.yexmp.2014.04.001SantosMFMannamVKRCraftBSPunekyLVSheehanNTLewisREet alComparative analysis of innate immune system function in metastatic breast, colorectal, and prostate cancer patients with circulating tumor cellsExp Mol Pathol2014963677410.1016/j.yexmp.2014.04.00124731923Open DOISearch in Google Scholar

McDonald B, Spicer J, Giannais B, Fallavollita L, Brodt P, Ferri LE. Systemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanisms. Int J Cancer 2009; 125: 1298-305. 10.1002/ijc.24409McDonaldBSpicerJGiannaisBFallavollitaLBrodtPFerriLESystemic inflammation increases cancer cell adhesion to hepatic sinusoids by neutrophil mediated mechanismsInt J Cancer2009125129830510.1002/ijc.2440919431213Open DOISearch in Google Scholar

Spicer JD, McDonald B, Cools-Lartigue JJ, Chow SC, Giannias B, Kubes P, et al. Neutrophils promote liver metastasis via Mac-1–mediated interactions with circulating tumor cells. Cancer Res 2012; 72: 3919-27. 10.1158/0008-5472.CAN-11-2393SpicerJDMcDonaldBCools-LartigueJJChowSCGianniasBKubesPet alNeutrophils promote liver metastasis via Mac-1–mediated interactions with circulating tumor cellsCancer Res20127239192710.1158/0008-5472.CAN-11-239322751466Open DOISearch in Google Scholar

Huh SJ, Liang S, Sharma A, Dong C, Robertson GP. Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Res 2010; 70: 6071-82. 10.1158/0008-5472.CAN-09-4442HuhSJLiangSSharmaADongCRobertsonGPTransiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis developmentCancer Res20107060718210.1158/0008-5472.CAN-09-4442290549520610626Open DOISearch in Google Scholar

Strell C, Lang K, Niggemann B, Zaenker KS, Entschladen F. Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Exp Cell Res 2010; 316: 138-48. 10.1016/j.yexcr.2009.09.003StrellCLangKNiggemannBZaenkerKSEntschladenFNeutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1Exp Cell Res20103161384810.1016/j.yexcr.2009.09.00319747913Open DOISearch in Google Scholar

Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, et al. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science 2007 317: 666-70. 10.1126/science.1142883AuffrayCFoggDGarfaMElainGJoin-LambertOKayalSet alMonitoring of blood vessels and tissues by a population of monocytes with patrolling behaviorScience20073176667010.1126/science.114288317673663Open DOISearch in Google Scholar

Hanna RN, Cekic C, Sag D, Tacke R, Thomas GD, Nowyhed H, et al. Patrolling monocytes control tumor metastasis to the lung. Science 2015; 350: 985-90. 10.1126/science.aac9407HannaRNCekicCSagDTackeRThomasGDNowyhedHet alPatrolling monocytes control tumor metastasis to the lungScience20153509859010.1126/science.aac9407486971326494174Open DOISearch in Google Scholar

De Giorgi U, Mego M, Scarpi E, Giuliano M, Giordano A, Reuben JM, et al. Relationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancer. Clin Breast Cancer 2012; 12: 264-9. 10.1016/j.clbc.2012.04.004De GiorgiUMegoMScarpiEGiulianoMGiordanoAReubenJMet alRelationship between lymphocytopenia and circulating tumor cells as prognostic factors for overall survival in metastatic breast cancerClin Breast Cancer201212264910.1016/j.clbc.2012.04.00422591634Open DOISearch in Google Scholar

Mego M, Gao H, Cohen EN, Anfossi S, Giordano A, Sanda T, et al. Circulating tumor cells (CTC) are associated with defects in adaptive immunity in patients with inflammatory breast Cancer. J Cancer 2016; 7: 1095-104. 10.7150/jca.13098MegoMGaoHCohenENAnfossiSGiordanoASandaTet alCirculating tumor cells (CTC) are associated with defects in adaptive immunity in patients with inflammatory breast CancerJ Cancer20167109510410.7150/jca.13098491187727326253Open DOISearch in Google Scholar

Ye L, Zhang F, Li H, Yang L, Lv T, Gu W, et al. Circulating tumor cells were associated with the number of T lymphocyte subsets and NK cells in peripheral blood in advanced non-small-cell lung cancer. Dis Markers 2017; 2017: 5727815. 10.1155/2017/5727815YeLZhangFLiHYangLLvTGuWet alCirculating tumor cells were associated with the number of T lymphocyte subsets and NK cells in peripheral blood in advanced non-small-cell lung cancerDis Markers20172017572781510.1155/2017/5727815575714429434410Open DOISearch in Google Scholar

Mazel M, Jacot W, Pantel K, Bartkowiak K, Topart D, Cayrefourcq L, et al. Frequent expression of PD-L1 on circulating breast cancer cells. Mol Oncol 2015; 9: 1773-82. 10.1016/j.molonc.2015.05.009MazelMJacotWPantelKBartkowiakKTopartDCayrefourcqLet alFrequent expression of PD-L1 on circulating breast cancer cellsMol Oncol2015917738210.1016/j.molonc.2015.05.009552872126093818Open DOISearch in Google Scholar

Kallergi G, Vetsika E-K, Aggouraki D, Lagoudaki E, Koutsopoulos A, Koinis F, et al. Evaluation of PD-L1/PD-1 on circulating tumor cells in patients with advanced non-small cell lung cancer. Ther Adv Med Oncol 2018; 10: 175883401775012. 10.1177/1758834017750121KallergiGVetsikaE-KAggourakiDLagoudakiEKoutsopoulosAKoinisFet alEvaluation of PD-L1/PD-1 on circulating tumor cells in patients with advanced non-small cell lung cancerTher Adv Med Oncol20181017588340177501210.1177/1758834017750121578457029383038Open DOISearch in Google Scholar

Oliveira-Costa JP, de Carvalho AF, da Silveira GG, Amaya P, Wu Y, Park KJ, et al. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells. Oncotarget 2015; 6: 20902-20920. 10.18632/oncotarget.3939Oliveira-CostaJPde CarvalhoAFda SilveiraGGAmayaPWuYParkKJet alGene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cellsOncotarget20156209022092010.18632/oncotarget.3939467323826041877Open DOISearch in Google Scholar

Yue C, Jiang Y, Li P, Wang Y, Xue J, Li N, et al. Dynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapy. Oncoimmunology 2018; 7: e1438111. 10.1080/2162402X.2018.1438111YueCJiangYLiPWangYXueJLiNet alDynamic change of PD-L1 expression on circulating tumor cells in advanced solid tumor patients undergoing PD-1 blockade therapyOncoimmunology20187e143811110.1080/2162402X.2018.1438111599349329900038Open DOISearch in Google Scholar

Nicolazzo C, Raimondi C, Mancini M, Caponnetto S, Gradilone A, Gandini O, et al. Monitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor nivolumab. Sci Rep 2016; 6: 31726. 10.1038/srep31726NicolazzoCRaimondiCManciniMCaponnettoSGradiloneAGandiniOet alMonitoring PD-L1 positive circulating tumor cells in non-small cell lung cancer patients treated with the PD-1 inhibitor nivolumabSci Rep201663172610.1038/srep31726499543127553175Open DOISearch in Google Scholar

Guibert N, Delaunay M, Lusque A, Boubekeur N, Rouquette I, Clermont E, et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer 2018; 120: 108-12. 10.1016/j.lungcan.2018.04.001GuibertNDelaunayMLusqueABoubekeurNRouquetteIClermontEet alPD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumabLung Cancer20181201081210.1016/j.lungcan.2018.04.00129748004Open DOISearch in Google Scholar

Micalizzi DS, Maheswaran S, Haber DA. A conduit to metastasis: circulating tumor cell biology. Genes Dev 2017; 31: 1827-40. 10.1101/gad.305805.117MicalizziDSMaheswaranSHaberDAA conduit to metastasis: circulating tumor cell biologyGenes Dev20173118274010.1101/gad.305805.117569508429051388Open DOISearch in Google Scholar

Reymond N, d’Água BB, Ridley AJ. Crossing the endothelial barrier during metastasis. Nat Rev Cancer 2013; 13: 858-70. 10.1038/nrc3628ReymondNd’ÁguaBBRidleyAJCrossing the endothelial barrier during metastasisNat Rev Cancer2013138587010.1038/nrc362824263189Open DOISearch in Google Scholar

Qian B, Deng Y, Im JH, Muschel RJ, Zou Y, Li J, et al. A distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growth. PLoS One 2009; 4: e6562. 10.1371/journal.pone.0006562QianBDengYImJHMuschelRJZouYLiJet alA distinct macrophage population mediates metastatic breast cancer cell extravasation, establishment and growthPLoS One20094e656210.1371/journal.pone.0006562272181819668347Open DOISearch in Google Scholar

Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell 2013; 24: 130-7. 10.1016/j.ccr.2013.05.008SchumacherDStrilicBSivarajKKWettschureckNOffermannsSPlatelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptorCancer Cell201324130710.1016/j.ccr.2013.05.00823810565Open DOISearch in Google Scholar

Kienast Y, von Baumgarten L, Fuhrmann M, Klinkert WE, Goldbrunner R, Herms J, et al. Real-time imaging reveals the single steps of brain metastasis formation. Nat Med 2010; 16: 116-22. 10.1038/nm.2072KienastYvon BaumgartenLFuhrmannMKlinkertWEGoldbrunnerRHermsJet alReal-time imaging reveals the single steps of brain metastasis formationNat Med2010161162210.1038/nm.207220023634Open DOISearch in Google Scholar

Hiratsuka S, Goel S, Kamoun WS, Maru Y, Fukumura D, Duda DG, et al. Endothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulation. Proc Natl Acad Sci 2011; 108: 3725-30. 10.1073/pnas.1100446108HiratsukaSGoelSKamounWSMaruYFukumuraDDudaDGet alEndothelial focal adhesion kinase mediates cancer cell homing to discrete regions of the lungs via E-selectin up-regulationProc Natl Acad Sci201110837253010.1073/pnas.1100446108304811521321210Open DOISearch in Google Scholar

Balkwill FR. The chemokine system and cancer. J Pathol 2012; 226: 148-57. 10.1002/path.3029BalkwillFRThe chemokine system and cancerJ Pathol20122261485710.1002/path.302921989643Open DOISearch in Google Scholar

Kukreja P, Abdel-Mageed AB, Mondal D, Liu K, Agrawal KC. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1α (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway–dependent NF-κB activation. Cancer Res 2005; 65: 9891-8. 10.1158/0008-5472.CAN-05-1293KukrejaPAbdel-MageedABMondalDLiuKAgrawalKCUp-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1α (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway–dependent NF-κB activationCancer Res2005659891810.1158/0008-5472.CAN-05-129316267013Open DOISearch in Google Scholar

Taichman RS, Cooper C, Keller ET, Pienta KJ, Taichman NS, McCauley LK. Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Res 2002; 62: 1832-7. http://www.ncbi.nlm.nih.gov/pubmed/11912162TaichmanRSCooperCKellerETPientaKJTaichmanNSMcCauleyLKUse of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to boneCancer Res20026218327http://www.ncbi.nlm.nih.gov/pubmed/11912162Search in Google Scholar

Hoeben A, Landuyt B, Highley MS, Wildiers H, Van Oosterom AT, De Bruijn EA. Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 2004; 56: 549-80. 10.1124/pr.56.4.3HoebenALanduytBHighleyMSWildiersHVanOosterom ATDeBruijn EAVascular endothelial growth factor and angiogenesisPharmacol Rev2004565498010.1124/pr.56.4.315602010Open DOISearch in Google Scholar

Drabsch Y, ten Dijke P. TGF-β signaling in breast cancer cell invasion and bone metastasis. J Mammary Gland Biol Neoplasia 2011; 16: 97-108. 10.1007/s10911-011-9217-1DrabschYtenDijke PTGF-β signaling in breast cancer cell invasion and bone metastasisJ Mammary Gland Biol Neoplasia2011169710810.1007/s10911-011-9217-1309579721494783Open DOISearch in Google Scholar

Wan L, Pantel K, Kang Y. Tumor metastasis: moving new biological insights into the clinic. Nat Med 2013; 19: 1450-64. 10.1038/nm.3391WanLPantelKKangYTumor metastasis: moving new biological insights into the clinicNat Med20131914506410.1038/nm.339124202397Open DOISearch in Google Scholar

De Cock JM, Shibue T, Dongre A, Keckesova Z, Reinhardt F, Weinberg RA. Inflammation triggers Zeb1-dependent escape from tumor latency. Cancer Res 2016; 76: 6778-84. 10.1158/0008-5472.CAN-16-0608DeCock JMShibueTDongreAKeckesovaZReinhardtFWeinbergRAInflammation triggers Zeb1-dependent escape from tumor latencyCancer Res20167667788410.1158/0008-5472.CAN-16-0608513564427530323Open DOISearch in Google Scholar

Li YC, Zou JM, Luo C, Shu Y, Luo J, Qin J, et al. Circulating tumor cells promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammation. Oncotarget 2017; 8: 28418-30. 10.18632/oncotarget.16084LiYCZouJMLuoCShuYLuoJQinJet alCirculating tumor cells promote the metastatic colonization of disseminated carcinoma cells by inducing systemic inflammationOncotarget20178284183010.18632/oncotarget.16084Open DOISearch in Google Scholar

Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 2009; 16: 183-94. 10.1016/j.ccr.2009.06.017FridlenderZGSunJKimSKapoorVChengGLingLet alPolarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TANCancer Cell2009161839410.1016/j.ccr.2009.06.017Open DOISearch in Google Scholar

Oskarsson T, Acharyya S, Zhang XH-F, Vanharanta S, Tavazoie SF, Morris PG, et al. Breast cancer cells produce tenascin C as a metastatic niche component to colonize the lungs. Nat Med 2011; 17: 867-74. 10.1038/nm.2379OskarssonTAcharyyaSZhangXH-FVanharantaSTavazoieSFMorrisPGet alBreast cancer cells produce tenascin C as a metastatic niche component to colonize the lungsNat Med2011178677410.1038/nm.2379Open DOISearch in Google Scholar

Malanchi I, Santamaria-Martínez A, Susanto E, Peng H, Lehr HA, Delaloye JF, et al. Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 2012; 481: 85-9. 10.1038/nature10694MalanchiISantamaria-MartínezASusantoEPengHLehrHADelaloyeJFet alInteractions between cancer stem cells and their niche govern metastatic colonizationNature201248185910.1038/nature10694Open DOISearch in Google Scholar

Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS, et al. Metastatic growth from dormant cells induced by a Col-I-enriched fibrotic environment. Cancer Res 2010; 70: 5706-16. 10.1158/0008-5472.CAN-09-2356BarkanDElTouny LHMichalowskiAMSmithJAChuIDavisASet alMetastatic growth from dormant cells induced by a Col-I-enriched fibrotic environmentCancer Res20107057061610.1158/0008-5472.CAN-09-2356Open DOISearch in Google Scholar

Costa-Silva B, Aiello NM, Ocean AJ, Singh S, Zhang H, Thakur BK, et al. Pancreatic cancer exosomes initiate pre-metastatic niche formation in the liver. Nat Cell Biol 2015; 17: 816-26. 10.1038/ncb3169Costa-SilvaBAielloNMOceanAJSinghSZhangHThakurBKet alPancreatic cancer exosomes initiate pre-metastatic niche formation in the liverNat Cell Biol2015178162610.1038/ncb3169Open DOISearch in Google Scholar

Zhang L, Ridgway LD, Wetzel MD, Ngo J, Yin W, Kumar D, et al. The identification and characterization of breast cancer CTCs competent for brain metastasis. Sci Transl Med 2013; 5: 180ra48. 10.1126/scitranslmed.3005109ZhangLRidgwayLDWetzelMDNgoJYinWKumarDet alThe identification and characterization of breast cancer CTCs competent for brain metastasisSci Transl Med20135180ra4810.1126/scitranslmed.3005109Open DOISearch in Google Scholar

Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C, et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 2003; 3: 537-49.KangYSiegelPMShuWDrobnjakMKakonenSMCordón-CardoCet alA multigenic program mediating breast cancer metastasis to boneCancer Cell200335374910.1016/S1535-6108(03)00132-6Search in Google Scholar

Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518-24. 10.1038/nature03799MinnAJGuptaGPSiegelPMBosPDShuWGiriDDet alGenes that mediate breast cancer metastasis to lungNature20054365182410.1038/nature03799128309816049480Open DOISearch in Google Scholar

Uhr JW, Pantel K. Controversies in clinical cancer dormancy. Proc Natl Acad Sci 2011; 108: 12396-400. 10.1073/pnas.1106613108UhrJWPantelKControversies in clinical cancer dormancyProc Natl Acad Sci20111081239640010.1073/pnas.1106613108314571221746894Open DOISearch in Google Scholar

Braun S, Vogl FD, Naume B, Janni W, Osborne MP, Coombes RC, et al. A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 2005; 353: 793-802. 10.1056/NEJMoa050434BraunSVoglFDNaumeBJanniWOsborneMPCoombesRCet alA pooled analysis of bone marrow micrometastasis in breast cancerN Engl J Med200535379380210.1056/NEJMoa05043416120859Open DOISearch in Google Scholar

Pantel K, Alix-Panabières C, Riethdorf S. Cancer micrometastases. Nat Rev Clin Oncol 2009; 6: 339-51. 10.1038/nrclinonc.2009.44PantelKAlix-PanabièresCRiethdorfSCancer micrometastasesNat Rev Clin Oncol200963395110.1038/nrclinonc.2009.4419399023Open DOISearch in Google Scholar

Krebs MG, Metcalf RL, Carter L, Brady G, Blackhall FH, Dive C. Molecular analysis of circulating tumour cells—biology and biomarkers. Nat Rev Clin Oncol 2014; 11: 129-44. 10.1038/nrclinonc.2013.253KrebsMGMetcalfRLCarterLBradyGBlackhallFHDiveCMolecular analysis of circulating tumour cells—biology and biomarkersNat Rev Clin Oncol2014111294410.1038/nrclinonc.2013.25324445517Open DOISearch in Google Scholar

Shen Z, Wu A, Chen X. Current detection technologies for circulating tumor cells. Chem Soc Rev 2017; 46: 2038-56. 10.1039/c6cs00803hShenZWuAChenXCurrent detection technologies for circulating tumor cellsChem Soc Rev20174620385610.1039/c6cs00803h559878428393954Open DOISearch in Google Scholar

Saucedo-Zeni N, Mewes S, Niestroj R, Gasiorowski L, Murawa D, Nowaczyk P, et al. A novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wire. Int J Oncol 2012; 41: 1241-50. 10.3892/ijo.2012.1557Saucedo-ZeniNMewesSNiestrojRGasiorowskiLMurawaDNowaczykPet alA novel method for the in vivo isolation of circulating tumor cells from peripheral blood of cancer patients using a functionalized and structured medical wireInt J Oncol20124112415010.3892/ijo.2012.1557358371922825490Open DOISearch in Google Scholar

Alix-Panabieres C, Pantel K. Circulating tumor cells: liquid biopsy of cancer. Clin Chem 2013; 59: 110-8. 10.1373/clinchem.2012.194258Alix-PanabieresCPantelKCirculating tumor cells: liquid biopsy of cancerClin Chem201359110810.1373/clinchem.2012.19425823014601Open DOISearch in Google Scholar

Hao S-J, Wan Y, Xia Y-Q, Zou X, Zheng S-Y. Size-based separation methods of circulating tumor cells. Adv Drug Deliv Rev 2018; 125: 3-20. doi:10.1016/j. addr.2018.01.002HaoS-JWanYXiaY-QZouXZhengS-YSize-based separation methods of circulating tumor cellsAdv Drug Deliv Rev201812532010.1016/j.addr.2018.01.00229326054Open DOISearch in Google Scholar

Ferreira MM, Ramani VC, Jeffrey SS. Circulating tumor cell technologies. Mol Oncol 2016; 10: 374-94. 10.1016/j.molonc.2016.01.007FerreiraMMRamaniVCJeffreySSCirculating tumor cell technologiesMol Oncol2016103749410.1016/j.molonc.2016.01.007552896926897752Open DOISearch in Google Scholar

Laget S, Broncy L, Hormigos K, Dhingra DM, BenMohamed F, Capiod T, et al. Technical insights into highly sensitive isolation and molecular characterization of fixed and live circulating tumor cells for early detection of tumor invasion. Plos One20171210.1371/journal.pone.0169427LagetSBroncyLHormigosKDhingraDMBenMohamedFCapiodTet alTechnical insights into highly sensitive isolation and molecular characterization of fixed and live circulating tumor cells for early detection of tumor invasionPlos One201712e016942710.1371/journal.pone.0169427521841528060956Open DOISearch in Google Scholar

Hvichia GE, Parveen Z, Wagner C, Janning M, Quidde J, Stein A, et al. A novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cells. Int J Cancer 2016; 138: 2894-904. 10.1002/ijc.30007HvichiaGEParveenZWagnerCJanningMQuiddeJSteinAet alA novel microfluidic platform for size and deformability based separation and the subsequent molecular characterization of viable circulating tumor cellsInt J Cancer2016138289490410.1002/ijc.30007506964926789903Open DOISearch in Google Scholar

Seal SH. Silicone flotation: A simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer 1959; 12: 590-5.SealSHSilicone flotation: A simple quantitative method for the isolation of free-floating cancer cells from the bloodCancer195912590510.1002/1097-0142(195905/06)12:3<590::AID-CNCR2820120318>3.0.CO;2-NSearch in Google Scholar

Rawal S, Yang Y-P, Cote R, Agarwal A. Identification and quantitation of circulating tumor cells. Annu Rev Anal Chem 2017; 10: 321-43. 10.1146/annurev-anchem-061516-045405RawalSYangY-PCoteRAgarwalAIdentification and quantitation of circulating tumor cellsAnnu Rev Anal Chem2017103214310.1146/annurev-anchem-061516-045405Open DOISearch in Google Scholar

Kulasinghe A, Zhou J, Kenny L, Papautsky I, Punyadeera C. Capture of circulating tumour cell clusters using straight microfluidic chips. Cancers (Basel) 2019; 11: 89. 10.3390/cancers11010089KulasingheAZhouJKennyLPapautskyIPunyadeeraCCapture of circulating tumour cell clusters using straight microfluidic chipsCancers (Basel)2019118910.3390/cancers11010089Open DOISearch in Google Scholar

Cabel L, Proudhon C, Gortais H, Loirat D, Coussy F, Pierga JY, et al. Circulating tumor cells: clinical validity and utility. Int J Clin Oncol 2017; 22: 421-30. 10.1007/s10147-017-1105-2CabelLProudhonCGortaisHLoiratDCoussyFPiergaJYet alCirculating tumor cells: clinical validity and utilityInt J Clin Oncol2017224213010.1007/s10147-017-1105-2Open DOISearch in Google Scholar

Guo M, Li X, Zhang S, Song H, Zhang W, Shang X, et al. Real-time quantitative RT-PCR detection of circulating tumor cells from breast cancer patients. Int J Oncol 2015; 46: 281-9. 10.3892/ijo.2014.2732GuoMLiXZhangSSongHZhangWShangXet alReal-time quantitative RT-PCR detection of circulating tumor cells from breast cancer patientsInt J Oncol201546281910.3892/ijo.2014.2732Open DOISearch in Google Scholar

Katseli A, Maragos H, Nezos A, Syrigos K, Koutsilieris M. Multiplex PCR-Based Detection of circulating tumor cells in lung cancer patients using CK19, PTHrP, and LUNX specific primers. Clin Lung Cancer 2013; 14: 513-20. 10.1016/j.cllc.2013.04.007KatseliAMaragosHNezosASyrigosKKoutsilierisMMultiplex PCR-Based Detection of circulating tumor cells in lung cancer patients using CK19, PTHrP, and LUNX specific primersClin Lung Cancer2013145132010.1016/j.cllc.2013.04.007Open DOISearch in Google Scholar

Riethdorf S, Fritsche H, Muller V, Rau T, Schindlbeck C, Rack B, et al. Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clin Cancer Res 2007; 13: 920-8. 10.1158/1078-0432.CCR-06-1695RiethdorfSFritscheHMullerVRauTSchindlbeckCRackBet alDetection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch systemClin Cancer Res200713920810.1158/1078-0432.CCR-06-1695Open DOISearch in Google Scholar

Bednarz-Knoll N, Alix-Panabières C, Pantel K. Plasticity of disseminating cancer cells in patients with epithelial malignancies. Cancer Metastasis Rev 2012; 31: 673-87. 10.1007/s10555-012-9370-zBednarz-KnollNAlix-PanabièresCPantelKPlasticity of disseminating cancer cells in patients with epithelial malignanciesCancer Metastasis Rev2012316738710.1007/s10555-012-9370-zOpen DOISearch in Google Scholar

Alix-Panabieres C, Pantel K. Clinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsy. Cancer Discov 2016; 6: 479-91. 10.1158/2159-8290.CD-15-1483Alix-PanabieresCPantelKClinical applications of circulating tumor cells and circulating tumor DNA as liquid biopsyCancer Discov201664799110.1158/2159-8290.CD-15-1483Open DOISearch in Google Scholar

Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med 2004; 351: 781-91. 10.1056/NEJMoa040766CristofanilliMBuddGTEllisMJStopeckAMateraJMillerMCet alCirculating tumor cells, disease progression, and survival in metastatic breast cancerN Engl J Med20043517819110.1056/NEJMoa040766Open DOISearch in Google Scholar

Pantel K, Deneve E, Nocca D, Coffy A, Vendrell JP, Maudelonde T, et al. Circulating epithelial cells in patients with benign colon diseases. Clin Chem 2012; 58: 936-40. 10.1373/clinchem.2011.175570PantelKDeneveENoccaDCoffyAVendrellJPMaudelondeTet alCirculating epithelial cells in patients with benign colon diseasesClin Chem2012589364010.1373/clinchem.2011.17557022205690Open DOISearch in Google Scholar

Davis JW, Nakanishi H, Kumar VS, Bhadkamkar VA, McCormack R, Fritsche HA, et al. Circulating tumor cells in peripheral blood samples from patients with increased serum prostate specific antigen: initial results in early prostate cancer. J Urol 2008; 179: 2187-191. 10.1016/j.juro.2008.01.102DavisJWNakanishiHKumarVSBhadkamkarVAMcCormackRFritscheHAet alCirculating tumor cells in peripheral blood samples from patients with increased serum prostate specific antigen: initial results in early prostate cancerJ Urol2008179218719110.1016/j.juro.2008.01.10218423725Open DOISearch in Google Scholar

Ilie M, Hofman V, Long-Mira E, Selva E, Vignaud JM, Padovani B, et al. “Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary disease. Kalinichenko V V., ed. PLoS One 2014; 9: e111597. 10.1371/journal.pone.0111597IlieMHofmanVLong-MiraESelvaEVignaudJMPadovaniBet al“Sentinel” circulating tumor cells allow early diagnosis of lung cancer in patients with chronic obstructive pulmonary diseaseKalinichenko V V., ed. PLoS One20149e11159710.1371/journal.pone.0111597421611325360587Open DOISearch in Google Scholar

Fiorelli A, Accardo M, Carelli E, Angioletti D, Santini M, Di Domenico M. Circulating tumor cells in diagnosing lung cancer: clinical and morphologic analysis. Ann Thorac Surg 2015; 99: 1899-905. 10.1016/j.atho-racsur.2014.11.049FiorelliAAccardoMCarelliEAngiolettiDSantiniMDiDomenico MCirculating tumor cells in diagnosing lung cancer: clinical and morphologic analysisAnn Thorac Surg201599189990510.1016/j.atho-racsur.2014.11.049Open DOISearch in Google Scholar

UICC International Union Against Cancer. TNM classification of malignant tumours. 7th edition. Sobin LH, Gospodarowicz MK, Wittekind C, editors. Chichester: Wiley-Blackwell; 2011.UICC International Union Against CancerTNM classification of malignant tumours. 7th editionSobinLHGospodarowiczMKWittekindCChichesterWiley-Blackwell2011Search in Google Scholar

Huang X, Gao P, Song Y, Sun J, Chen X, Zhao J, et al. Meta-analysis of the prognostic value of circulating tumor cells detected with the CellSearch System in colorectal cancer. BMC Cancer 2015; 15: 202. 10.1186/s12885-015-1218-9HuangXGaoPSongYSunJChenXZhaoJet alMeta-analysis of the prognostic value of circulating tumor cells detected with the CellSearch System in colorectal cancerBMC Cancer20151520210.1186/s12885-015-1218-9438931125880692Open DOISearch in Google Scholar

Vlaeminck-Guillem V. When prostate cancer circulates in the bloodstream. Diagnostics 2015; 5: 428-74. 10.3390/diagnostics5040428Vlaeminck-GuillemV.When prostate cancer circulates in the bloodstreamDiagnostics201554287410.3390/diagnostics5040428472846826854164Open DOISearch in Google Scholar

Krebs MG, Sloane R, Priest L, Lancashire L, Hou JM, Greystoke A, et al. Evaluation and prognostic significance of circulating tumor cells in patients with non–small-cell lung cancer. J Clin Oncol 2011; 29: 1556-63. 10.1200/JCO.2010.28.7045KrebsMGSloaneRPriestLLancashireLHouJMGreystokeAet alEvaluation and prognostic significance of circulating tumor cells in patients with non–small-cell lung cancerJ Clin Oncol20112915566310.1200/JCO.2010.28.704521422424Open DOISearch in Google Scholar

Hou J-M, Krebs MG, Lancashire L, Sloane R, Backen A, Swain RK, et al. Clinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancer. J Clin Oncol 2012; 30: 525-32. 10.1200/JCO.2010.33.3716HouJ-MKrebsMGLancashireLSloaneRBackenASwainRKet alClinical significance and molecular characteristics of circulating tumor cells and circulating tumor microemboli in patients with small-cell lung cancerJ Clin Oncol2012305253210.1200/JCO.2010.33.371622253462Open DOISearch in Google Scholar

Janni WJ, Rack B, Terstappen LWMM, Pierga JY, Taran FA, Fehm T, et al. Pooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancer. Clin Cancer Res 2016; 22: 2583-93. 10.1158/1078-0432.CCR-15-1603JanniWJRackBTerstappenLWMMPiergaJYTaranFAFehmTet alPooled analysis of the prognostic relevance of circulating tumor cells in primary breast cancerClin Cancer Res20162225839310.1158/1078-0432.CCR-15-160326733614Open DOISearch in Google Scholar

Cohen SJ, Punt CJA, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol 2008; 26: 3213-21. 10.1200/JCO.2007.15.8923CohenSJPuntCJAIannottiNSaidmanBHSabbathKDGabrailNYet alRelationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancerJ Clin Oncol20082632132110.1200/JCO.2007.15.892318591556Open DOISearch in Google Scholar

Bidard FC, Huguet F, Louvet C, Mineur L, Bouche O, Chibaudel B, et al. Circulating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trial. Ann Oncol 2013; 24: 2057-61. 10.1093/annonc/mdt176BidardFCHuguetFLouvetCMineurLBoucheOChibaudelBet alCirculating tumor cells in locally advanced pancreatic adenocarcinoma: the ancillary CirCe 07 study to the LAP 07 trialAnn Oncol20132420576110.1093/annonc/mdt17623676420Open DOISearch in Google Scholar

Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer. Clin Cancer Res 2012; 18: 5701-10. 10.1158/1078-0432.CCR-12-1587ZhangLRiethdorfSWuGWangTYangKPengGet alMeta-analysis of the prognostic value of circulating tumor cells in breast cancerClin Cancer Res20121857011010.1158/1078-0432.CCR-12-158722908097Open DOISearch in Google Scholar

Grobe A, Blessmann M, Hanken H, Friedrich RE, Schön G, Wikner J, et al. Prognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of patients with squamous cell carcinoma of the oral cavity. Clin Cancer Res 2014; 20: 425-33. 10.1158/1078-0432.CCR-13-1101GrobeABlessmannMHankenHFriedrichRESchönGWiknerJet alPrognostic relevance of circulating tumor cells in blood and disseminated tumor cells in bone marrow of patients with squamous cell carcinoma of the oral cavityClin Cancer Res2014204253310.1158/1078-0432.CCR-13-110124218516Open DOISearch in Google Scholar

Tol J, Koopman M, Miller MC, Tibbe A, Cats A, Creemers GJM, et al. Circulating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agents. Ann Oncol 2010; 21: 1006-12. 10.1093/annonc/mdp463TolJKoopmanMMillerMCTibbeACatsACreemersGJMet alCirculating tumour cells early predict progression-free and overall survival in advanced colorectal cancer patients treated with chemotherapy and targeted agentsAnn Oncol20102110061210.1093/annonc/mdp46319861577Open DOISearch in Google Scholar

Sastre J, Maestro ML, Gomez-Espana A, Rivera F, Valladares M, Massuti B, et al. Circulating tumor cell count is a prognostic factor in metastatic colorectal cancer patients receiving first-line chemotherapy plus bevacizumab: A Spanish Cooperative Group for the Treatment of Digestive Tumors Study. Oncologist 2012; 17: 947-55. 10.1634/theoncologist.2012-0048SastreJMaestroMLGomez-EspanaARiveraFValladaresMMassutiBet alCirculating tumor cell count is a prognostic factor in metastatic colorectal cancer patients receiving first-line chemotherapy plus bevacizumab: A Spanish Cooperative Group for the Treatment of Digestive Tumors StudyOncologist2012179475510.1634/theoncologist.2012-0048339965122643538Open DOISearch in Google Scholar

de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, et al. Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 2008; 14: 6302-9. 10.1158/1078-0432.CCR-08-0872deBono JSScherHIMontgomeryRBParkerCMillerMCTissingHet alCirculating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancerClin Cancer Res2008146302910.1158/1078-0432.CCR-08-087218829513Open DOISearch in Google Scholar

Jansson S, Bendahl P-O, Larsson A-M, Aaltonen KE, Rydén L. Prognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohort. BMC Cancer 2016; 16: 433. 10.1186/s12885-016-2406-yJanssonSBendahlP-OLarssonA-MAaltonenKERydénLPrognostic impact of circulating tumor cell apoptosis and clusters in serial blood samples from patients with metastatic breast cancer in a prospective observational cohortBMC Cancer20161643310.1186/s12885-016-2406-y493891927390845Open DOISearch in Google Scholar

Lu CY, Uen YH, Tsai HL, Chuang SC, Hou MF, Wu DC, et al. Molecular detection of persistent postoperative circulating tumour cells in stages II and III colon cancer patients via multiple blood sampling: prognostic significance of detection for early relapse. Br J Cancer 2011; 104: 1178-84. 10.1038/bjc.2011.40LuCYUenYHTsaiHLChuangSCHouMFWuDCet alMolecular detection of persistent postoperative circulating tumour cells in stages II and III colon cancer patients via multiple blood sampling: prognostic significance of detection for early relapseBr J Cancer201110411788410.1038/bjc.2011.40306849221343933Open DOISearch in Google Scholar

Yamada T, Matsuda A, Koizumi M, Shinji S, Takahashi G, Iwai T, et al. Liquid biopsy for the management of patients with colorectal cancer. Digestion 2019; 99: 39-45. 10.1159/000494411YamadaTMatsudaAKoizumiMShinjiSTakahashiGIwaiTet alLiquid biopsy for the management of patients with colorectal cancerDigestion201999394510.1159/00049441130554222Open DOISearch in Google Scholar

Goodman CR, Seagle B-LL, Friedl TWP, Rack B, Lato K, Fink V, et al. Association of circulating tumor cell status with benefit of radiotherapy and survival in early-stage breast cancer. JAMA Oncol 2018; 4: e180163. 10.1001/jamaoncol.2018.0163GoodmanCRSeagleB-LLFriedlTWPRackBLatoKFinkVet alAssociation of circulating tumor cell status with benefit of radiotherapy and survival in early-stage breast cancerJAMA Oncol20184e18016310.1001/jamaoncol.2018.0163614305329800954Open DOISearch in Google Scholar

Scher HI, Heller G, Molina A, Attard G, Danila DC, Jia X, et al. Circulating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancer. J Clin Oncol 2015; 33: 134855. 10.1200/JCO.2014.55.3487ScherHIHellerGMolinaAAttardGDanilaDCJiaXet alCirculating tumor cell biomarker panel as an individual-level surrogate for survival in metastatic castration-resistant prostate cancerJ Clin Oncol20153313485510.1200/JCO.2014.55.3487Open DOISearch in Google Scholar

Bidard F-C, Peeters DJ, Fehm T, Nolé F, Gisbert-Criado R, Mavroudis D, et al. Clinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient data. Lancet Oncol 2014; 15: 406-14. 10.1016/S1470-2045(14)70069-5BidardF-CPeetersDJFehmTNoléFGisbert-CriadoRMavroudisDet alClinical validity of circulating tumour cells in patients with metastatic breast cancer: a pooled analysis of individual patient dataLancet Oncol2014154061410.1016/S1470-2045(14)70069-5Open DOISearch in Google Scholar

Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, et al. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014; 345: 216-20. 10.1126/sci-ence.1253533YuMBardiaAAcetoNBersaniFMaddenMWDonaldsonMCet alEx vivo culture of circulating breast tumor cells for individualized testing of drug susceptibilityScience20143452162010.1126/sci-ence.1253533Open DOISearch in Google Scholar

Gates JD, Benavides LC, Stojadinovic A, Mittendorf EA, Holmes JP, Carmichael MG, et al. Monitoring circulating tumor cells in cancer vaccine trials. Hum Vaccin 2008; 4: 389-92.GatesJDBenavidesLCStojadinovicAMittendorfEAHolmesJPCarmichaelMGet alMonitoring circulating tumor cells in cancer vaccine trialsHum Vaccin200843899210.4161/hv.4.5.611518437056Search in Google Scholar

Lin M, Liang S-Z, Shi J, Niu LZ, Chen JB, Zhang MJ, et al. Circulating tumor cell as a biomarker for evaluating allogenic NK cell immunotherapy on stage IV non-small cell lung cancer. Immunol Lett 2017; 191: 10-5. 10.1016/j.imlet.2017.09.004LinMLiangS-ZShiJNiuLZChenJBZhangMJet alCirculating tumor cell as a biomarker for evaluating allogenic NK cell immunotherapy on stage IV non-small cell lung cancerImmunol Lett201719110510.1016/j.imlet.2017.09.00428916277Open DOISearch in Google Scholar

Kalinsky K, Mayer JA, Xu X, Pham T, Wong KL, Villarin E, et al. Correlation of hormone receptor status between circulating tumor cells, primary tumor, and metastasis in breast cancer patients. Clin Transl Oncol 2015; 17: 539-46. 10.1007/s12094-015-1275-1KalinskyKMayerJAXuXPhamTWongKLVillarinEet alCorrelation of hormone receptor status between circulating tumor cells, primary tumor, and metastasis in breast cancer patientsClin Transl Oncol2015175394610.1007/s12094-015-1275-1449787525613123Open DOISearch in Google Scholar

Lee JS, Magbanua MJM, Park JW. Circulating tumor cells in breast cancer: applications in personalized medicine. Breast Cancer Res Treat 2016; 160: 411-24. 10.1007/s10549-016-4014-6LeeJSMagbanuaMJMParkJWCirculating tumor cells in breast cancer: applications in personalized medicineBreast Cancer Res Treat20161604112410.1007/s10549-016-4014-627761678Open DOISearch in Google Scholar

Tewes M, Aktas B, Welt A, Mueller S, Hauch S, Kimmig R, et al. Molecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapies. Breast Cancer Res Treat 2009; 115: 581-90. 10.1007/s10549-008-0143-xTewesMAktasBWeltAMuellerSHauchSKimmigRet alMolecular profiling and predictive value of circulating tumor cells in patients with metastatic breast cancer: an option for monitoring response to breast cancer related therapiesBreast Cancer Res Treat20091155819010.1007/s10549-008-0143-x18679793Open DOISearch in Google Scholar

Aktas B, Müller V, Tewes M, Zeitz J, Kasimir-Bauer S, Loehberg CR, et al. Comparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patients. Gynecol Oncol 2011; 122: 356-60. 10.1016/j.ygyno.2011.04.039AktasBMüllerVTewesMZeitzJKasimir-BauerSLoehbergCRet alComparison of estrogen and progesterone receptor status of circulating tumor cells and the primary tumor in metastatic breast cancer patientsGynecol Oncol20111223566010.1016/j.ygyno.2011.04.03921605893Open DOISearch in Google Scholar

Somlo G, Lau SK, Frankel P, Hsieh HB, Liu X, Yang L, et al. Multiple biomarker expression on circulating tumor cells in comparison to tumor tissues from primary and metastatic sites in patients with locally advanced/inflammatory, and stage IV breast cancer, using a novel detection technology. Breast Cancer Res Treat 2011; 128: 155-63. 10.1007/s10549-011-1508-0SomloGLauSKFrankelPHsiehHBLiuXYangLet alMultiple biomarker expression on circulating tumor cells in comparison to tumor tissues from primary and metastatic sites in patients with locally advanced/inflammatory, and stage IV breast cancer, using a novel detection technologyBreast Cancer Res Treat20111281556310.1007/s10549-011-1508-0354387121499685Open DOISearch in Google Scholar

Paoletti C, Muñiz MC, Thomas DG, Griffith KA, Kidwell KM, Tokudome N, et al. Development of circulating tumor cell-endocrine therapy index in patients with hormone receptor–positive breast cancer. Clin Cancer Res 2015; 21: 2487-98. 10.1158/1078-0432.CCR-14-1913PaolettiCMuñizMCThomasDGGriffithKAKidwellKMTokudomeNet alDevelopment of circulating tumor cell-endocrine therapy index in patients with hormone receptor–positive breast cancerClin Cancer Res20152124879810.1158/1078-0432.CCR-14-1913551662525381338Open DOISearch in Google Scholar

Jaeger BAS, Neugebauer J, Andergassen U, Melcher C, Schochter F, Mouarrawy D, et al. The HER2 phenotype of circulating tumor cells in HER2-positive early breast cancer: A translational research project of a prospective randomized phase III trial. PLoS One 2017; 12: e0173593. 10.1371/journal.pone.0173593JaegerBASNeugebauerJAndergassenUMelcherCSchochterFMouarrawyDet alThe HER2 phenotype of circulating tumor cells in HER2-positive early breast cancer: A translational research project of a prospective randomized phase III trialPLoS One201712e017359310.1371/journal.pone.0173593546078928586395Open DOISearch in Google Scholar

Georgoulias V, Bozionelou V, Agelaki S, Perraki M, Apostolaki S, Kallergi G, et al. Trastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19mRNA-positive circulating tumor cells: results of a randomized phase II study. Ann Oncol 2012; 23: 1744-50. 10.1093/annonc/mds020GeorgouliasVBozionelouVAgelakiSPerrakiMApostolakiSKallergiGet alTrastuzumab decreases the incidence of clinical relapses in patients with early breast cancer presenting chemotherapy-resistant CK-19mRNA-positive circulating tumor cells: results of a randomized phase II studyAnn Oncol20122317445010.1093/annonc/mds02022377561Open DOISearch in Google Scholar

Kulasinghe A, Kapeleris J, Kimberley R, Mattarollo SR, Thompson EW, Thiery JP, et al. The prognostic significance of circulating tumor cells in head and neck and non-small-cell lung cancer. Cancer Med 2018; 7: 5910-19. 10.1002/cam4.1832KulasingheAKapelerisJKimberleyRMattarolloSRThompsonEWThieryJPet alThe prognostic significance of circulating tumor cells in head and neck and non-small-cell lung cancerCancer Med2018759101910.1002/cam4.1832630806030565869Open DOISearch in Google Scholar

Antonarakis ES, Lu C, Luber B, Wang H, Chen Y, Nakazawa M, et al. Androgen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancer. JAMA Oncol 2015; 1: 582. 10.1001/jamaoncol.2015.1341AntonarakisESLuCLuberBWangHChenYNakazawaMet alAndrogen receptor splice variant 7 and efficacy of taxane chemotherapy in patients with metastatic castration-resistant prostate cancerJAMA Oncol2015158210.1001/jamaoncol.2015.1341453735126181238Open DOISearch in Google Scholar

Payne RE, Yagüe E, Slade MJ, Apostolopoulos C, Jiao LR, Ward B, et al. Measurements of EGFR expression on circulating tumor cells are reproducible over time in metastatic breast cancer patients. Pharmacogenomics 2009; 10: 51-7. 10.2217/14622416.10.1.51PayneREYagüeESladeMJApostolopoulosCJiaoLRWardBet alMeasurements of EGFR expression on circulating tumor cells are reproducible over time in metastatic breast cancer patientsPharmacogenomics20091051710.2217/14622416.10.1.5119102715Open DOISearch in Google Scholar

Nadal R, Ortega FG, Salido M, Lorente JA, Rodríguez-Rivera M, Delgado-Rodríguez M, et al. CD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapy. Int J Cancer 2013; 133: 2398-407. 10.1002/ijc.28263NadalROrtegaFGSalidoMLorenteJARodríguez-RiveraMDelgado-RodríguezMet alCD133 expression in circulating tumor cells from breast cancer patients: potential role in resistance to chemotherapyInt J Cancer2013133239840710.1002/ijc.2826323661576Open DOISearch in Google Scholar

Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, et al. Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol 2013; 31: 539-44. 10.1038/nbt.2576BaccelliISchneeweissARiethdorfSStenzingerASchillertAVogelVet alIdentification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assayNat Biotechnol2013315394410.1038/nbt.257623609047Open DOISearch in Google Scholar

Tellez-Gabriel M, Cochonneau D, Cadé M, Jubellin C, Heymann MF, Heymann D. Circulating tumor cell-derived pre-clinical models for personalized medicine. Cancers (Basel) 2018; 11.1: 19. 10.3390/cancers11010019Tellez-GabrielMCochonneauDCadéMJubellinCHeymannMFHeymannDCirculating tumor cell-derived pre-clinical models for personalized medicineCancers (Basel)20181111910.3390/cancers11010019635699830586936Open DOISearch in Google Scholar

Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res 2015; 17: 17. 10.1186/s13058-015-0523-1WhittleJRLewisMTLindemanGJVisvaderJEPatient-derived xenograft models of breast cancer and their predictive powerBreast Cancer Res2015171710.1186/s13058-015-0523-1432326325849559Open DOISearch in Google Scholar

Lallo A, Gulati S, Schenk MW, Khandelwal G, Berglund UW, Pateras IS, et al. Ex vivo culture of cells derived from circulating tumour cell xenograft to support small cell lung cancer research and experimental therapeutics. Br J Pharmacol 2018; 176.3: 436-50. 10.1111/bph.14542LalloAGulatiSSchenkMWKhandelwalGBerglundUWPaterasISet alEx vivo culture of cells derived from circulating tumour cell xenograft to support small cell lung cancer research and experimental therapeuticsBr J Pharmacol201817634365010.1111/bph.14542632963030427531Open DOISearch in Google Scholar

Pereira-Veiga T, Abreu M, Robledo D, Matias-Guiu X, Santacana M, Sánchez L, et al. CTCs-derived xenograft development in a triple negative breast cancer case. Int J Cancer 2019; 144: 2254-65. 10.1002/ijc.32001Pereira-VeigaTAbreuMRobledoDMatias-GuiuXSantacanaMSánchezLet alCTCs-derived xenograft development in a triple negative breast cancer caseInt J Cancer201914422546510.1002/ijc.3200130450632Open DOISearch in Google Scholar

Williams ES, Rodriquez-Bravo V, Chippada-Venkata U, Iglesia-Vicente JDI, Gong Y, Galsky M, et al. Generation of prostate cancer patient derived xenograft models from circulating tumor cells. J Vis Exp 2015; 104: e53182. 10.3791/53182WilliamsESRodriquez-BravoVChippada-VenkataUIglesia-VicenteJDIGongYGalskyMet alGeneration of prostate cancer patient derived xenograft models from circulating tumor cellsJ Vis Exp2015104e5318210.3791/53182469265826555435Open DOISearch in Google Scholar

Pierga JY, Hajage D, Bachelot T, Delaloge S, Brain E, Campone M, et al. High independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patients. Ann Oncol 2012; 23: 618-24. 10.1093/annonc/mdr263PiergaJYHajageDBachelotTDelalogeSBrainECamponeMet alHigh independent prognostic and predictive value of circulating tumor cells compared with serum tumor markers in a large prospective trial in first-line chemotherapy for metastatic breast cancer patientsAnn Oncol2012236182410.1093/annonc/mdr26321642515Open DOISearch in Google Scholar

Cristofanilli M, Hayes DF, Budd GT, Ellis MJ, Stopeck A, Reuben JM, et al. Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. J Clin Oncol 2005; 23: 1420-30. 10.1200/JCO.2005.08.140CristofanilliMHayesDFBuddGTEllisMJStopeckAReubenJMet alCirculating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancerJ Clin Oncol20052314203010.1200/JCO.2005.08.14015735118Open DOISearch in Google Scholar

Dawood S, Broglio K, Valero V, Reuben J, Handy B, Islam R, et al. Circulating tumor cells in metastatic breast cancer. Cancer 2008; 113: 2422-30. 10.1002/cncr.23852DawoodSBroglioKValeroVReubenJHandyBIslamRet alCirculating tumor cells in metastatic breast cancerCancer200811324223010.1002/cncr.2385218785255Open DOISearch in Google Scholar

Hayes DF, Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Miller MC, et al. Circulating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survival. Clin Cancer Res 2006; 12: 4218-24. 10.1158/1078-0432.CCR-05-2821HayesDFCristofanilliMBuddGTEllisMJStopeckAMillerMCet alCirculating tumor cells at each follow-up time point during therapy of metastatic breast cancer patients predict progression-free and overall survivalClin Cancer Res20061242182410.1158/1078-0432.CCR-05-282116857794Open DOISearch in Google Scholar

Nole F, Munzone E, Zorzino L, Minchella I, Salvatici M, Botteri E, et al. Variation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implications. Ann Oncol 2008; 19: 891-7. 10.1093/annonc/mdm558NoleFMunzoneEZorzinoLMinchellaISalvaticiMBotteriEet alVariation of circulating tumor cell levels during treatment of metastatic breast cancer: prognostic and therapeutic implicationsAnn Oncol200819891710.1093/annonc/mdm55818056915Open DOISearch in Google Scholar

Paoletti C, Li Y, Muniz MC, Kidwell KM, Aung K, Thomas DG, et al. Significance of circulating tumor cells in metastatic triple-negative breast cancer patients within a randomized, phase II trial: TBCRC 019. Clin Cancer Res 2015; 21: 2771-9. 10.1158/1078-0432.CCR-14-2781PaolettiCLiYMunizMCKidwellKMAungKThomasDGet alSignificance of circulating tumor cells in metastatic triple-negative breast cancer patients within a randomized, phase II trial: TBCRC 019Clin Cancer Res2015212771910.1158/1078-0432.CCR-14-2781552120625779948Open DOISearch in Google Scholar

Yan WT, Cui X, Chen Q, Li YF, Cui YH, Wang, Y, et al. Circulating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysis. Sci Rep 2017; 7: 43464. 10.1038/srep43464YanWTCuiXChenQLiYFCuiYHWangYet alCirculating tumor cell status monitors the treatment responses in breast cancer patients: a meta-analysisSci Rep201774346410.1038/srep43464536451228337998Open DOISearch in Google Scholar

Giuliano M, Giordano A, Jackson S, Hess KR, De Giorgi U, Mego M, et al. Circulating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatment. Breast Cancer Res 2011; 13: R67. 10.1186/bcr2907GiulianoMGiordanoAJacksonSHessKRDe GiorgiUMegoMet alCirculating tumor cells as prognostic and predictive markers in metastatic breast cancer patients receiving first-line systemic treatmentBreast Cancer Res201113R6710.1186/bcr2907321895621699723Open DOISearch in Google Scholar

Budd GT, Cristofanilli M, Ellis MJ, Stopeck A, Borden E, Miller MC, et al. Circulating tumor cells versus imaging--predicting overall survival in metastatic breast cancer. Clin Cancer Res 2006; 12: 6403-9. 10.1158/1078-0432.CCR-05-1769BuddGTCristofanilliMEllisMJStopeckABordenEMillerMCet alCirculating tumor cells versus imaging--predicting overall survival in metastatic breast cancerClin Cancer Res2006126403910.1158/1078-0432.CCR-05-176917085652Open DOISearch in Google Scholar

Mego M, De Giorgi U, Dawood S, Wang X, Valero V, Andreopoulou E, et al. Characterization of metastatic breast cancer patients with nondetectable circulating tumor cells. Int J Cancer 2011; 129: 417-23. 10.1002/ijc.25690MegoMDe GiorgiUDawoodSWangXValeroVAndreopoulouEet alCharacterization of metastatic breast cancer patients with nondetectable circulating tumor cellsInt J Cancer20111294172310.1002/ijc.2569020857493Open DOISearch in Google Scholar

Smerage JB, Barlow WE, Hortobagyi GN, Winer EP, Leyland-Jones B, Srkalovic G, et al. Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500. J Clin Oncol 2014; 32: 3483-89. 10.1200/JCO.2014.56.2561SmerageJBBarlowWEHortobagyiGNWinerEPLeyland-JonesBSrkalovicGet alCirculating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500J Clin Oncol20143234838910.1200/JCO.2014.56.2561420910024888818Open DOISearch in Google Scholar

Thiery JP, Lim CT. Tumor Dissemination: An EMT Affair. Cancer Cell 2013; 23: 272-3. 10.1016/j.ccr.2013.03.004ThieryJPLimCTTumor Dissemination: An EMT AffairCancer Cell201323272310.1016/j.ccr.2013.03.00423518345Open DOISearch in Google Scholar

Mooney SM, Talebian V, Jolly MK, Jia D, Gromala M, Levine H, et al. The GRHL2/ZEB feedback loop-a key axis in the regulation of EMT in breast cancer. J Cell Biochem 2017; 118: 2559-70. 10.1002/jcb.25974MooneySMTalebianVJollyMKJiaDGromalaMLevineHet alThe GRHL2/ZEB feedback loop-a key axis in the regulation of EMT in breast cancerJ Cell Biochem201711825597010.1002/jcb.2597428266048Open DOISearch in Google Scholar

Pattabiraman DR, Weinberg RA. Targeting the epithelial-to-mesenchymal transition: the case for differentiation-based therapy. Cold Spring Harb Symp Quant Biol 2016; 81: 11-9. 10.1101/sqb.2016.81.030957PattabiramanDRWeinbergRATargeting the epithelial-to-mesenchymal transition: the case for differentiation-based therapyCold Spring Harb Symp Quant Biol20168111910.1101/sqb.2016.81.030957572263128057845Open DOISearch in Google Scholar

Giordano A, Giuliano M, De Laurentiis M, Arpino G, Jackson S, Handy BC, et al. Circulating tumor cells in immunohistochemical subtypes of metastatic breast cancer: lack of prediction in HER2-positive disease treated with targeted therapy. Ann Oncol 2012; 23: 1144-50. 10.1093/annonc/mdr434GiordanoAGiulianoMDe LaurentiisMArpinoGJacksonSHandyBCet alCirculating tumor cells in immunohistochemical subtypes of metastatic breast cancer: lack of prediction in HER2-positive disease treated with targeted therapyAnn Oncol20122311445010.1093/annonc/mdr43421965473Open DOISearch in Google Scholar

Lu Y, Wang P, Wang X, Peng J, Zhu Y, Shen N. The significant prognostic value of circulating tumor cells in triple-negative breast cancer: a meta-analysis. Oncotarget 2016; 7: 37361-9. 10.18632/oncotarget.8156LuYWangPWangXPengJZhuYShenNThe significant prognostic value of circulating tumor cells in triple-negative breast cancer: a meta-analysisOncotarget2016737361910.18632/oncotarget.8156509508227008698Open DOISearch in Google Scholar

Riethdorf S, O’Flaherty L, Hille C, Pantel K. Clinical applications of the CellSearch platform in cancer patients. Adv Drug Deliv Rev 2018; 125: 102-21. 10.1016/j.addr.2018.01.011RiethdorfSO’FlahertyLHilleCPantelKClinical applications of the CellSearch platform in cancer patientsAdv Drug Deliv Rev20181251022110.1016/j.addr.2018.01.01129355669Open DOISearch in Google Scholar

Rack B, Schindlbeck C, Jückstock J, Andergassen U, Hepp P, Zwingers T, et al. Circulating tumor cells predict survival in early average-to-high risk breast cancer patients. JNCI J Natl Cancer Inst 2014; 106.5. 10.1093/jnci/dju066RackBSchindlbeckCJückstockJAndergassenUHeppPZwingersTet alCirculating tumor cells predict survival in early average-to-high risk breast cancer patientsJNCI J Natl Cancer Inst2014106510.1093/jnci/dju066Open DOISearch in Google Scholar

Sandri MT, Zorzino L, Cassatella MC, Bassi F, Luini A, Casadio C, et al. Changes in circulating tumor cell detection in patients with localized breast cancer before and after surgery. Ann Surg Oncol 2010; 17: 1539-45. 10.1245/s10434-010-0918-2SandriMTZorzinoLCassatellaMCBassiFLuiniACasadioCet alChanges in circulating tumor cell detection in patients with localized breast cancer before and after surgeryAnn Surg Oncol20101715394510.1245/s10434-010-0918-2Open DOISearch in Google Scholar

Krishnamurthy S, Cristofanilli M, Singh B, Anfossi S, Khoury J, Hess K, et al. Detection of minimal residual disease in blood and bone marrow in early stage breast cancer. Cancer 2010; 116: 3330-7. 10.1002/cncr.25145KrishnamurthySCristofanilliMSinghBAnfossiSKhouryJHessKet alDetection of minimal residual disease in blood and bone marrow in early stage breast cancerCancer20101163330710.1002/cncr.25145Open DOISearch in Google Scholar

Lucci A, Hall CS, Lodhi AK, Bhattacharyya A, Anderson AE, Xiao L, et al. Circulating tumour cells in non-metastatic breast cancer: a prospective study. Lancet Oncol 2012; 13: 688-95. 10.1016/S1470-2045(12)70209-7LucciAHallCSLodhiAKBhattacharyyaAAndersonAEXiaoLet alCirculating tumour cells in non-metastatic breast cancer: a prospective studyLancet Oncol2012136889510.1016/S1470-2045(12)70209-7Open DOISearch in Google Scholar

Hall CS, Karhade MG, Bowman Bauldry JB, Valad LM, Kuerer HM, DeSnyder SM, et al. Prognostic value of circulating tumor cells identified before surgical resection in nonmetastatic breast cancer patients. J Am Coll Surg 2016; 223: 20-9. 10.1016/j.jamcollsurg.2016.02.021HallCSKarhadeMGBowmanBauldry JBValadLMKuererHMDeSnyderSMet alPrognostic value of circulating tumor cells identified before surgical resection in nonmetastatic breast cancer patientsJ Am Coll Surg201622320910.1016/j.jamcollsurg.2016.02.021Open DOISearch in Google Scholar

Hartkopf AD, Wallwiener M, Hahn M, Fehm TN, Brucker SY, Taran FA. Simultaneous detection of disseminated and circulating tumor cells in primary breast cancer patients. Cancer Res Treat 2016; 48: 115-24. 10.4143/crt.2014.287HartkopfADWallwienerMHahnMFehmTNBruckerSYTaranFASimultaneous detection of disseminated and circulating tumor cells in primary breast cancer patientsCancer Res Treat2016481152410.4143/crt.2014.287Open DOISearch in Google Scholar

Riethdorf S, Müller V, Loibl S, Nekljudova V, Weber K, Huober J, et al. Prognostic impact of circulating tumor cells for breast cancer patients treated in the neoadjuvant »Geparquattro« trial. Clin Cancer Res 2017; 23: 5384-93. 10.1158/1078-0432.CCR-17-0255RiethdorfSMüllerVLoiblSNekljudovaVWeberKHuoberJet alPrognostic impact of circulating tumor cells for breast cancer patients treated in the neoadjuvant »Geparquattro« trialClin Cancer Res20172353849310.1158/1078-0432.CCR-17-0255Open DOISearch in Google Scholar

Riethdorf S, Muller V, Zhang L, Rau T, Loibl S, Komor M, et al. Detection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trial. Clin Cancer Res 2010; 16: 2634-45. 10.1158/1078-0432.CCR-09-2042RiethdorfSMullerVZhangLRauTLoiblSKomorMet alDetection and HER2 expression of circulating tumor cells: prospective monitoring in breast cancer patients treated in the neoadjuvant GeparQuattro trialClin Cancer Res20101626344510.1158/1078-0432.CCR-09-2042Open DOISearch in Google Scholar

Pierga JY, Bidard FC, Mathiot C, Brain E, Delaloge S, Giachetti S, et al. Circulating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trial. Clin Cancer Res 2008; 14: 7004-10. 10.1158/1078-0432.CCR-08-0030PiergaJYBidardFCMathiotCBrainEDelalogeSGiachettiSet alCirculating tumor cell detection predicts early metastatic relapse after neoadjuvant chemotherapy in large operable and locally advanced breast cancer in a phase II randomized trialClin Cancer Res20081470041010.1158/1078-0432.CCR-08-0030Open DOISearch in Google Scholar

Scher HI, Jia X, de Bono JS, Fleisher M, Pienta KJ, Raghavan D, et al. Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol 2009; 10: 233-9. 10.1016/S1470-2045(08)70340-1ScherHIJiaXde BonoJSFleisherMPientaKJRaghavanDet alCirculating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial dataLancet Oncol200910233910.1016/S1470-2045(08)70340-1Open DOISearch in Google Scholar

Goodman OB, Fink LM, Symanowski JT, Wong B, Grobaski B, Pomerantz D, et al. Circulating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factors. Cancer Epidemiol Biomarkers Prev 2009; 18: 1904-13. 10.1158/1055-9965.EPI-08-1173GoodmanOBFinkLMSymanowskiJTWongBGrobaskiBPomerantzDet alCirculating tumor cells in patients with castration-resistant prostate cancer baseline values and correlation with prognostic factorsCancer Epidemiol Biomarkers Prev20091819041310.1158/1055-9965.EPI-08-117319505924Open DOISearch in Google Scholar

Okegawa T, Itaya N, Hara H, Tambo M, Nutahara K. Circulating tumor cells as a biomarker predictive of sensitivity to docetaxel chemotherapy in patients with castration-resistant prostate cancer. Anticancer Res 2014; 34: 6705-10.OkegawaTItayaNHaraHTamboMNutaharaKCirculating tumor cells as a biomarker predictive of sensitivity to docetaxel chemotherapy in patients with castration-resistant prostate cancerAnticancer Res201434670510Search in Google Scholar

Vogelzang NJ, Fizazi K, Burke JM, De Wit R, Bellmunt J, Hutson TE, et al. Circulating tumor cells in a phase 3 study of docetaxel and prednisone with or without lenalidomide in metastatic castration-resistant prostate cancer. Eur Urol 2017; 71: 168-71. 10.1016/j.eururo.2016.07.051VogelzangNJFizaziKBurkeJMDe WitRBellmuntJHutsonTEet alCirculating tumor cells in a phase 3 study of docetaxel and prednisone with or without lenalidomide in metastatic castration-resistant prostate cancerEur Urol2017711687110.1016/j.eururo.2016.07.05127522164Open DOISearch in Google Scholar

Goldkorn A, Ely B, Quinn DI, Tangen CM, Fink LM, Xu T, et al. Circulating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancer. J Clin Oncol 2014; 32: 1136-42. 10.1200/JCO.2013.51.7417GoldkornAElyBQuinnDITangenCMFinkLMXuTet alCirculating tumor cell counts are prognostic of overall survival in SWOG S0421: a phase III trial of docetaxel with or without atrasentan for metastatic castration-resistant prostate cancerJ Clin Oncol20143211364210.1200/JCO.2013.51.7417397017124616308Open DOISearch in Google Scholar

Scher HI, Morris MJ, Stadler WM, Higano C, Basch E, Fizazi K, et al. Trial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3. J Clin Oncol 2016; 34: 1402-18. 10.1200/JCO.2015.64.2702ScherHIMorrisMJStadlerWMHiganoCBaschEFizaziKet alTrial design and objectives for castration-resistant prostate cancer: updated recommendations from the Prostate Cancer Clinical Trials Working Group 3J Clin Oncol20163414021810.1200/JCO.2015.64.2702487234726903579Open DOISearch in Google Scholar

Danila DC, Heller G, Gignac GA, Gonzalez-Espinoza R, Anand A, Tanaka E, et al. Circulating tumor cell number and prognosis in progressive castration-resistant prostate cancer. Clin Cancer Res 2007; 13: 7053-8. 10.1158/1078-0432.CCR-07-1506DanilaDCHellerGGignacGAGonzalez-EspinozaRAnandATanakaEet alCirculating tumor cell number and prognosis in progressive castration-resistant prostate cancerClin Cancer Res2007137053810.1158/1078-0432.CCR-07-150618056182Open DOISearch in Google Scholar

Thalgott M, Rack B, Horn T, Heck MM, Eiber M, Kübler H, et al. Detection of circulating tumor cells in locally advanced high-risk prostate cancer during neoadjuvant chemotherapy and radical prostatectomy. Anticancer Res 2015; 35: 5679-85.ThalgottMRackBHornTHeckMMEiberMKüblerHet alDetection of circulating tumor cells in locally advanced high-risk prostate cancer during neoadjuvant chemotherapy and radical prostatectomyAnticancer Res201535567985Search in Google Scholar

Meyer CP, Pantel K, Tennstedt P, Stroelin P, Schlomm T, Heinzer H, et al. Limited prognostic value of preoperative circulating tumor cells for early biochemical recurrence in patients with localized prostate cancer. Urol Oncol Semin Orig Investig201634235.e11-235.e1610.1016/j.urolonc.2015.12.003MeyerCPPantelKTennstedtPStroelinPSchlommTHeinzerHet alLimited prognostic value of preoperative circulating tumor cells for early biochemical recurrence in patients with localized prostate cancerUrol Oncol Semin Orig Investig201634235e11-235.e1610.1016/j.urolonc.2015.12.00326795608Open DOISearch in Google Scholar

Loh J, Jovanovic L, Lehman M, Capp A, Pryor D, Harris M, et al. Circulating tumor cell detection in high-risk non-metastatic prostate cancer. J Cancer Res Clin Oncol 2014; 140: 2157-62. 10.1007/s00432-014-1775-3LohJJovanovicLLehmanMCappAPryorDHarrisMet alCirculating tumor cell detection in high-risk non-metastatic prostate cancerJ Cancer Res Clin Oncol201414021576210.1007/s00432-014-1775-325028119Open DOISearch in Google Scholar

Okegawa T, Nutahara K, Higashihara E. Immunomagnetic quantification of circulating tumor cells as a prognostic factor of androgen deprivation responsiveness in patients with hormone naive metastatic prostate cancer. J Urol 2008; 180: 1342-7. 10.1016/j.juro.2008.06.021OkegawaTNutaharaKHigashiharaEImmunomagnetic quantification of circulating tumor cells as a prognostic factor of androgen deprivation responsiveness in patients with hormone naive metastatic prostate cancerJ Urol20081801342710.1016/j.juro.2008.06.02118707699Open DOISearch in Google Scholar

Goodman OB, Symanowski JT, Loudyi A, Fink LM, Ward DC, Vogelzang NJ. Circulating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancer. Clin Genitourin Cancer 2011; 9: 31-8. 10.1016/j.clgc.2011.04.001GoodmanOBSymanowskiJTLoudyiAFinkLMWardDCVogelzangNJCirculating tumor cells as a predictive biomarker in patients with hormone-sensitive prostate cancerClin Genitourin Cancer2011931810.1016/j.clgc.2011.04.00121705286Open DOISearch in Google Scholar

Resel Folkersma L, San José Manso L, Galante Romo I, Moreno Sierra J, Olivier Gómez C. Prognostic significance of circulating tumor cell count in patients with metastatic hormone-sensitive prostate cancer. Urology 2012; 80: 1328-32. 10.1016/j.urology.2012.09.001ReselFolkersma LSanJosé Manso LGalanteRomo IMorenoSierra JOlivierGómez CPrognostic significance of circulating tumor cell count in patients with metastatic hormone-sensitive prostate cancerUrology20128013283210.1016/j.urology.2012.09.00123063057Open DOISearch in Google Scholar

Rink M, Chun FKH, Minner S, Friedrich M, Mauermann O, Heinzer H, et al. Detection of circulating tumour cells in peripheral blood of patients with advanced non-metastatic bladder cancer. BJU Int 2011; 107: 1668-75. 10.1111/j.1464-410X.2010.09562.xRinkMChunFKHMinnerSFriedrichMMauermannOHeinzerHet alDetection of circulating tumour cells in peripheral blood of patients with advanced non-metastatic bladder cancerBJU Int201110716687510.1111/j.1464-410X.2010.09562.x20735381Open DOISearch in Google Scholar

Rink M, Chun FK, Dahlem R, Soave A, Minner S, Hansen J, et al. Prognostic role and HER2 expression of circulating tumor cells in peripheral blood of patients prior to radical cystectomy: a prospective study. Eur Urol 2012; 61: 810-7. 10.1016/j.eururo.2012.01.017RinkMChunFKDahlemRSoaveAMinnerSHansenJet alPrognostic role and HER2 expression of circulating tumor cells in peripheral blood of patients prior to radical cystectomy: a prospective studyEur Urol201261810710.1016/j.eururo.2012.01.01722277196Open DOISearch in Google Scholar

Soave A, Riethdorf S, Dahlem R, Minner S, Weisbach L, Engel O, et al. Detection and oncological effect of circulating tumour cells in patients with variant urothelial carcinoma histology treated with radical cystectomy. BJU Int 2017; 119: 854-61. 10.1111/bju.13782SoaveARiethdorfSDahlemRMinnerSWeisbachLEngelOet alDetection and oncological effect of circulating tumour cells in patients with variant urothelial carcinoma histology treated with radical cystectomyBJU Int20171198546110.1111/bju.1378228182321Open DOISearch in Google Scholar

Nastały P, Ruf C, Becker P, Bednarz-Knoll N, Stoupiec M, Kavsur R, et al. Circulating tumor cells in patients with testicular germ cell tumors. Clin Cancer Res 2014; 20: 3830-41. 10.1158/1078-0432.CCR-13-2819NastałyPRufCBeckerPBednarz-KnollNStoupiecMKavsurRet alCirculating tumor cells in patients with testicular germ cell tumorsClin Cancer Res20142038304110.1158/1078-0432.CCR-13-281924634372Open DOISearch in Google Scholar

Gorin MA, Verdone JE, van der Toom E, Bivalacqua TJ, Allaf ME, Pienta KJ. Circulating tumour cells as biomarkers of prostate, bladder and kidney cancer. Nat Rev Urol 2017; 14: 90-7. 10.1038/nrurol.2016.224GorinMAVerdoneJEvander Toom EBivalacquaTJAllafMEPientaKJCirculating tumour cells as biomarkers of prostate, bladder and kidney cancerNat Rev Urol20171490710.1038/nrurol.2016.22427872478Open DOISearch in Google Scholar

Gradilone A, Iacovelli R, Cortesi E, Raimondi C, Gianni W, Nicolazzo C, et al. Circulating tumor cells and »suspicious objects« evaluated through CellSearch® in metastatic renal cell carcinoma. Anticancer Res 2011; 31: 4219-21.GradiloneAIacovelliRCortesiERaimondiCGianniWNicolazzoCet alCirculating tumor cells and »suspicious objects« evaluated through CellSearch® in metastatic renal cell carcinomaAnticancer Res201131421921Search in Google Scholar

van Dalum G, Stam GJ, Scholten LF, Mastboom WJ, Vermes I, Tibbe AG, et al. Importance of circulating tumor cells in newly diagnosed colorectal cancer. Int J Oncol 2015; 46: 1361-8. 10.3892/ijo.2015.2824vanDalum GStamGJScholtenLFMastboomWJVermesITibbeAGet alImportance of circulating tumor cells in newly diagnosed colorectal cancerInt J Oncol2015461361810.3892/ijo.2015.282425572133Open DOISearch in Google Scholar

Bissolati M, Sandri MT, Burtulo G, Zorzino L, Balzano G, Braga M. Portal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancer. Tumor Biol 2015; 36: 991-6. 10.1007/s13277-014-2716-0BissolatiMSandriMTBurtuloGZorzinoLBalzanoGBragaMPortal vein-circulating tumor cells predict liver metastases in patients with resectable pancreatic cancerTumor Biol201536991610.1007/s13277-014-2716-025318603Open DOISearch in Google Scholar

Khoja L, Backen A, Sloane R, Menasce L, Ryder D, Krebs M, et al. A pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarker. Br J Cancer 2012; 106: 508-16. 10.1038/bjc.2011.545KhojaLBackenASloaneRMenasceLRyderDKrebsMet alA pilot study to explore circulating tumour cells in pancreatic cancer as a novel biomarkerBr J Cancer20121065081610.1038/bjc.2011.545327334022187035Open DOISearch in Google Scholar

Yang JD, Campion MB, Liu MC, Chaiteerakij R, Giama NH, Mohammed HA, et al. Circulating tumor cells are associated with poor overall survival in patients with cholangiocarcinoma. Hepatology 2016; 63: 148-58. 10.1002/hep.27944YangJDCampionMBLiuMCChaiteerakijRGiamaNHMohammedHAet alCirculating tumor cells are associated with poor overall survival in patients with cholangiocarcinomaHepatology2016631485810.1002/hep.27944468481226096702Open DOISearch in Google Scholar

Naito T, Tanaka F, Ono A, Yoneda K, Takahashi T, Murakami H, et al. Prognostic impact of circulating tumor cells in patients with small cell lung cancer. J Thorac Oncol 2012; 7: 512-9. 10.1097/JTO.0b013e31823f125dNaitoTTanakaFOnoAYonedaKTakahashiTMurakamiHet alPrognostic impact of circulating tumor cells in patients with small cell lung cancerJ Thorac Oncol20127512910.1097/JTO.0b013e31823f125d22258473Open DOISearch in Google Scholar

Hiltermann TJN, Pore MM, van den Berg A, Timens W, Boezen HM, Liesker JJW, et al. Circulating tumor cells in small-cell lung cancer: a predictive and prognostic factor. Ann Oncol 2012; 23: 2937-42. 10.1093/annonc/mds138HiltermannTJNPoreMMvan denBerg ATimensWBoezenHMLieskerJJWet alCirculating tumor cells in small-cell lung cancer: a predictive and prognostic factorAnn Oncol20122329374210.1093/annonc/mds13822689177Open DOISearch in Google Scholar

Komine K, Inoue M, Otsuka K, Fukuda K, Nanjo H, Shibata H. Utility of measuring circulating tumor cell counts to assess the efficacy of treatment for carcinomas of unknown primary origin. Anticancer Res 2014; 34: 3165-8.KomineKInoueMOtsukaKFukudaKNanjoHShibataHUtility of measuring circulating tumor cell counts to assess the efficacy of treatment for carcinomas of unknown primary originAnticancer Res20143431658Search in Google Scholar

eISSN:
1581-3207
Idioma:
Inglés
Calendario de la edición:
4 veces al año
Temas de la revista:
Medicine, Clinical Medicine, Radiology, Internal Medicine, Haematology, Oncology