1. bookVolume 22 (2022): Edition 2 (April 2022)
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Effects of pepper extract in suckling lamb feed: growth performance, metabolism, and oxidative responses

Publié en ligne: 12 May 2022
Volume & Edition: Volume 22 (2022) - Edition 2 (April 2022)
Pages: 731 - 739
Reçu: 23 Dec 2020
Accepté: 15 Jul 2021
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

Our objective was to determine whether the inclusion of pepper extract would improve health in suckling lambs, stimulating antioxidant activity, and improving performance. We used Lacaune lambs distributed in four treatments, with four repetitions per treatment and three lambs per repetition: control group (T0) and treatments T1, T2, and T3 that received 200, 400, and 800 mg/kg of pepper extract, respectively. Groups T1 and T2 consumed more significant amounts of silage than group T0, and animals from group T1 consumed more concentrate and, consequently, consumed more solids. The addition of pepper extract enhanced growth performance, with the lowest dose (T1) giving rise to the most significant weight gain, average daily gain, and body weight, compared to T0. Regression analysis showed that the optimum point for pepper extract supplementation was 301.5 mg/kg. The levels of total protein and globulins were significantly higher for animals supplemented with pepper extract (day 28) than the control; the concentrations of albumin and urea increased over time but did not differ significantly among treatments. Serum glucose levels decreased significantly over time; however, the groups supplemented with pepper extract showed higher concentrations than group T0. The hematocrit was significantly higher in groups fed pepper extract; hemoglobin concentrations were also more significant, increasing over time in both groups. The groups that consumed the pepper extract had higher leukocyte counts due to greater lymphocytes and neutrophils. Levels of non-protein thiols increased significantly over time, while lipid peroxidation levels decreased significantly in all groups. The concentrations of reactive oxygen species significantly decreased in the serum of group T3 animals, those fed with pepper extract (day 28), compared to the control. In general, the addition of pepper extract in lamb feed can enhance weight gain, increase antioxidant levels, and stimulate the production of leukocytes and globulins in lambs.

Keywords

Abd El-Hack M.E., Alagawany M., Abdelnour S. (2019). Responses of growing rabbits to supplementing diet with a mixture of black and red pepper oils as a natural growth promoter. J. Anim. Physiol. Anim. Nutr. (Berl.), 103: 509–517.Search in Google Scholar

Adwas A., Elsayed A., Azab A., Quwaydir F.A. (2019). Oxidative stress and antioxidant mechanisms in human body. J. Appl. Biotechnol. Bioeng, 6: 43.Search in Google Scholar

Alford J.B., Castro J.G., Oosthuysen E.R., Rosasco S.L., Richins R.D. (2016). Effects of capsaicin source on blood capsaicin, glucose and insulin concentrations, rumen fermentation and nitrogen balance of sheep. J. Anim. Sci., 67: 171–175.Search in Google Scholar

Ali S.F., LeBel C.P., Bondy S.C. (1992). Reactive oxygen species formation as a biomarker of methylmercury and trimethyltin neurotoxicity. Neurotoxicology, 13: 637–648.Search in Google Scholar

Al-Kassie G.A., Butris G.Y., Ajeena S.J. (2012). The potency of feed supplemented mixture of hot red pepper and black pepper on the performance and some hematological blood traits in broiler diet. Int. J. Adv. Biol. Res., 2: 53–57.Search in Google Scholar

AOAC (1997). Official methods of analysis. 18th edition. Association of Official Analytical Chemists.Search in Google Scholar

Barnes P.J. (1990). Reactive oxygen species and airway inflammation. Free Radic. Biol. Med., 9: 235–243.Search in Google Scholar

Castillo C., Benedito J.L., Vázquez P., Pereira V., Méndez J., Sotillo J., Hernández J. (2012). Effects of supplementation with plant extract product containing carvacrol, cinnamaldehyde and capsaicin on serum metabolites and enzymes during the finishing phase of feedlot-fed bull calves. Anim. Feed Sci. Technol., 171: 246–250.Search in Google Scholar

Cazarotto C.J., Boito J.P., Gebert R.R., Reis J.H., Machado G., Bottari N.B., Morsch V.M., Schetinger M.R.C., Doleski P.H., Leal M.L.R., Baldissera M.D., Da Silva A.S. (2018). Metaphylactic effect of minerals on immunological and antioxidant responses, weight gain and minimization of coccidiosis of newborn lambs. Res. Vet. Sci., 121: 46–52.Search in Google Scholar

Cécere B.G., Alba D.F., Deolindo G.L., Araújo D.N., da Silva A.S. (2020). Impact of dietary bee honey during first weeks of life in dairy lambs on growth and metabolism. Comp. Clin. Pathol., 29: 495–499.Search in Google Scholar

Chen X.J., Nedelkov K., Oh J., Harper M.T., Wall E.H., Felix T.L., Hristov A.N. (2019). Effect of a blend of artificial sweetener and capsicum on productive performance and blood chemistry in growing lambs. Anim. Feed Sci. Technol., 258: 114308.Search in Google Scholar

Cunha M.G., Alba D.F., Leal K.W., Marcon H., Souza C.F., Baldissera M.D., Paglia E.B., Kempka A.P., Vedovatto M., Zotti C.A., Da Silva A.S. (2020). Inclusion of pepper extract containing capsaicin in the diet of ewes in the mid-lactation period: effects on health, milk production, and quality. Res. Soc. Develop., 9: e46791110020.Search in Google Scholar

De Oliveira M.V., Ferreira I.C., Júnior G.D.L.M., Rosalinski-Moraes F., Antunes M.M., França A.M.S., Naves J.G. Rodrigues V.J.C. (2013). Benefícios do uso da monensina sódica na nutrição de cordeiros semi-confinados (in Portuguese). Biosci. J., 29.Search in Google Scholar

Feldman B.F. (2000). Schalm’s Veterinary Hematology 5th ed. Wiley-Blackwell, Malden.Search in Google Scholar

Frankic T., Levart A., Salobir J. (2010). The effect of vitamin E and plant extract mixture composed of carvacrol, cinnamaldehyde and capsaicin on oxidative stress induced by high PUFA load in young pigs. Animal, 4: 572.Search in Google Scholar

Gu H., Yang Z., Yu W., Xu K., Fu Y.F. (2019). Antibacterial activity of capsaicin against sectional cariogenic bacteria. Pak. J. Zool., 51: 681.Search in Google Scholar

Hassan M.H., Edfawy M., Mansour A., Hamed A.A. (2012). Antioxidant and antiapoptotic effects of capsaicin against carbon tetrachloride-induced hepatotoxicity in rats. Toxicol. Industr. Health, 28: 428–438.Search in Google Scholar

Hernández-Castellano L.E., Moreno-Indias I., Morales-delaNuez A., Sánchez-Macías D., Torres A., Capote J., Castro N. (2015). The effect of milk source on body weight and immune status of lambs. Livest. Sci., 175: 70–76.Search in Google Scholar

Hsu Y.J., Huang W.C., Chiu C.C., Liu Y.L., Chiu W.C., Chiu C.H., Chiu Y.S. Huang C.C. (2016). Capsaicin supplementation reduces physical fatigue and improves exercise performance in mice. Nutrients, 8: 648.Search in Google Scholar

Jamroz D., Orda J., Kamel C., Wiliczkiewicz A., Wertelecki T., Skorupinska J. (2003). The influence of phytogenic extracts on performance, nutrient digestibility, carcass characteristics, and gut microbial status in broiler chickens. J. Anim. Feed Sci., 12: 583–596.Search in Google Scholar

Jarupan T., Rakangthong C., Bunchasak C., Poeikhampha T., Kromkhun P. (2018). Effect of colistin and liquid methionine with capsaicin supplementation in diets on growth performance and intestinal morphology of nursery pigs. Int. J. Pharm. Med. Biol. Sci., 7: 35–39.Search in Google Scholar

Jentzsch A.M., Bachmann H., Fürst P., Biesalski H.K. (1996). Improved analysis of malondialdehyde in human body fluids. Free Radic. Biol. Med., 20: 251–256.Search in Google Scholar

Kim S.H., Hwang J.T., Park H.S., Kwon D.Y., Kim M.S. (2013). Capsaicin stimulates glucose uptake in C2C12 muscle cells via the reactive oxygen species (ROS)/AMPK/p38 MAPK pathway. Biochem. Biophys. Res. Commun., 439: 66–70.Search in Google Scholar

Komarek A.R. (1993). A filter bag procedure for improved efficiency of fiberanalysis. J. Dairy Sci., 76: 250.Search in Google Scholar

Magalhães K., de Lucena C.C. (2019). Características e evolução da ovinocultura a partir dos dados definitivos do Censo Agropecuário de 2017. Embrapa Caprinos e Ovinos-Documentos (INFOTECA-E).Search in Google Scholar

Manjunatha H., Srinivasan K. (2007). Hypolipidemic and antioxidant effects of dietary curcumin and capsaicin in induced hypercholesterolemic rats. Lipids, 42: 1133.Search in Google Scholar

Mannervik B., Guthenberg C. (1981). Glutathione transferase (human placenta). In: Methods in Enzymology. Academic Press, 77: 231–235.Search in Google Scholar

Marcon H., Baldissera M.D., Furlan V.J., Wagner R., Alba D.F., Molosse V.L. Cécere B.G.O., Da Silva A.S. (2020). Curcumin supplementation positively modulates fatty acid profiles in lamb meat. Small Rumin. Res., 106141.10.1016/j.smallrumres.2020.106141Search in Google Scholar

Marcon H., Souza C.F., Baldissera M., Alba D., Favaretto J., Santos D., Borges L., Kessler J., Vedovatto M., Bianchi A., Da Silva A.S. (2021). Effect of curcumin dietary supplementation on growth performance, physiology, carcass characteristics and meat quality in lambs. Ann. Anim. Sci., 21: 623–638.Search in Google Scholar

Mertens D.R. (2002). Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: collaborative study. J. AOAC Int., 85: 1217–1240.Search in Google Scholar

Molosse V., Souza C.F., Baldissera M.D., Glombowsky P., Campigotto G., Cazaratto C.J., Stefani L.M. da Silva A.S. (2019). Diet supplemented with curcumin for nursing lambs improves animal growth, energetic metabolism, and performance of the antioxidant and immune systems. Small Rumin. Res., 170: 74–81.Search in Google Scholar

Ochi T., Takaishi Y., Kogure K., Yamauti I. (2003). Antioxidant activity of a new capsaicin derivative from Capsicum annuum. J. Nat. Prod., 66: 1094–1096.Search in Google Scholar

Paim P.T., Cardoso M.T.M., Borges B.O., Gomes E.F., Louvandini H., McManus C. (2011). Estudo econômico da produção de cordeiros cruzados confinados abatidos em diferentes pesos (in Portuguese). Ciência Anim. Bras., 12: 48–57.Search in Google Scholar

Peña-Alvarez A., Ramírez-Maya E., Alvarado-Suárez L.A. (2009). Analysis of capsaicin and dihydrocapsaicin in peppers and pepper sauces by solid phase microextraction-gas chromatography-mass spectrometry. J. Chromatogr. A., 1216: 2843–2847.Search in Google Scholar

Pinto C.M.F., de Oliveira Pinto C.L., Donzeles S.M.L. (2013). Pimenta Capsicum: propriedades químicas, nutricionais, farmacológicas e medicinais e seu potencial para o agronegócio (in Portuguese). Rev. Bras. Agropec. Sustent., 3.Search in Google Scholar

Rizzo P.V., Menten J.F.M., Racanicci A.M.C., Traldi A.B., Silva C.S., Pereira P.W.Z. (2010). Extratos vegetais em dietas para frangos de corte (in Portuguese). Rev. Bras. Zoot., 39: 801–807.Search in Google Scholar

Santos E.L., Ludke M.C.M.M., Lima M.R. (2009). Extratos vegetais como aditivos em rações para peixes. Rev. Eletr. Nutr., 6: 789–200.Search in Google Scholar

Sedlak J., Lindsay R.H. (1968). Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Analytic. Biochem., 25: 192–205.Search in Google Scholar

Senger C.C., Kozloski G.V., Sanchez L.M.B., Mesquita F.R., Alves T.P., Castagnino D.S. (2008). Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim. Feed Sci. Technol., 146: 169–174.Search in Google Scholar

Silva D.J., Queiroz A.C. (2002). Análises de alimentos (métodos químicos e biológicos) (in Portuguese). 3.ed. Viçosa MG: Editora UFV, 235 pp.Search in Google Scholar

Stevanovic Z.D., Bošnjak-Neumüller J., Pajic-Lijakovic I., Raj J., Vasiljevic M. (2018). Essential oils as feed additives – future perspectives. Molecules, 23: 1717.Search in Google Scholar

Ünlü H.B., İpçak H.H., Kandemir Ç., Özdoğan M., Canbolat O. (2021). Effects of oregano essential oil and capsicum extract on fattening, serum constituents, and rumen fermentation of lambs. South Afr. Soc. Anim. Sci., 51: 172–179.Search in Google Scholar

Weiss W.P., Conrad H.R., Pierre N.S. (1992). A theoretically-based model for predicting total digestible nutrient values of forages and concentrates. Anim. Feed Sci. Technol., 39: 95–110.Search in Google Scholar

Wesolowska A., Jadczak D., Grzeszczuk M. (2011). Chemical composition of the pepper fruit extracts of hot cultivars Capsicum annuum L. Acta Sci. Pol. Hort. Cult., 10: 171–184.Search in Google Scholar

Westphalen M.F., Carvalho P.H., Oh J., Hristov A.N., Staniar W.B., Felix T.L. (2021). Effects of feeding rumen-protected Capsicum oleoresin on growth performance, health status, and total tract digestibility of growing beef cattle. Anim. Feed Sci. Technol., 271: 114778.Search in Google Scholar

Zafra M.A., Molina F., Puerto A. (2003). Effects of perivagal administration of capsaicin on post-surgical food intake. Auton. Neurosci., 107: 37–44.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo