Accès libre

Mechanical Properties of Concrete with Recycled Plastic Waste

À propos de cet article

Citez

Plastics are a vast group of synthetic or semi-synthetic materials that are often made of polymers. Because of their plasticity, plastics can be molded, extruded, and pressed into solid objects of different sizes. Its extensive use is due to its flexibility, as well as a number of other properties such as light weight, durability, and low manufacturing costs. The high use of plastics has resulted in an increase in solid waste, with domestic waste accounting for a significant portion of it. Since this waste is not biodegradable and takes up a lot of space, it is considered a serious environmental problem. To overcome these adverse effects, recycling plastic waste and using it in concrete can be an effective way to protect the environment. In this study, an attempt was made to experimentally evaluate the mechanical properties of concrete with recycled PET plastic wastes. The effect of this type of plastic waste was investigated by adding it in three different lengths: 22 mm, 45 mm, and a combination of both lengths 22 + 45 mm. For each length of fiber, it was added in three percentages to concrete 0.1, 0.3 and 0.5 % of cement weight. Several experiments were carried out on concrete mixtures such as slump test, compressive test, splitting tensile test, flexural test, and ultrasound pulse velocity test. The findings showed that PET waste in the form of fibers could be incorporated into concrete and achieve adequate compressive strength. When the ultrasound test results were compared to the results of previous tests, it was discovered that normal concrete containing plastic waste in the form of fibers performed exceptionally well.