Accès libre

Litter mixture effects on decomposition change with forest succession and are influenced by time and soil fauna in tropical mountain Andes

À propos de cet article

Citez

Bakker, M.A., Carreño-Rocabado, G., Poorter, L., 2011. Leaf economics traits predict litter decomposition of tropical plants and differ among land use types. Functional Ecology, 25: 473–483. https://doi.org/10.1111/j.1365-2435.2010.01802.x. Search in Google Scholar

Bax, V., Francesconi, W., 2019. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: implications for the expansion of protected areas. Journal of Environmental Management, 232: 387–396. https://doi.org/10.1016/j.jenvman.2018.11.086. Search in Google Scholar

Berg, B., McClaugherty, C.A. (eds), 2020. Plant litter: decomposition, humus formation, carbon sequestration. Switzerland: Springer Nature. 569 p. Search in Google Scholar

Butenschoen, O., Krashevska, V., Maraun, M., Marian, F., Sandmann, D., Scheu, S., 2014. Litter mixture effects on decomposition in tropical montane rainforests vary strongly with time and turn negative at later stages of decay. Soil Biology and Biochemistry, 77: 121–128. https://doi.org/10.1016/j.soilbio.2014.06.019. Search in Google Scholar

Calbi, M., Clerici, N., Borsch, T., Brokamp, G., 2020. Reconstructing long term high Andean forest dynamics using historical aerial imagery: a case study in Colombia. Forests, 11: 788. https://doi.org/10.3390/f11080788. Search in Google Scholar

Calbi, M., Fajardo-Gutiérrez, F., Posada, J.M., Lücking, R., Brokamp, G., Borsch, T., 2021. Seeing the wood despite the trees: exploring human disturbance impact on plant diversity, community structure, and standing biomass in fragmented high Andean forests. Ecology and Evolution, 11: 2110–2172. https://doi.org/10.1002/ece3.7182. Search in Google Scholar

Camara, C.A.G.D., Marsaioli, A.J., Bittrich V., 2018. Chemical constituents of apolar fractions from fruit latex of twelve Clusia species (Clusiaceae). Anais da Academia Brasileira de Ciências, 90: 1919–1927. https://doi.org/10.1590/0001-3765201820170257. Search in Google Scholar

Canessa, R., van den Brink, L., Saldaña, A., Rios, R.S., Hättenschwiler, S., Mueller, C.W., Prater, I., Tielbörger, K., Bader, M.Y., 2021. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. Journal of Ecology, 109: 447–458. https://doi.org/10.1111/1365-2745.13516. Search in Google Scholar

Canessa, R., van den Brink, L., Berdugo, M.B., Hättenschwiler, S., Rios, R.S., Saldaña, A., Tielbörger, K., Bader, M.Y., 2022. Trait functional diversity explains mixture effects on litter decomposition at the arid end of a climate gradient. Journal of Ecology, 110: 2219–2231. https://doi.org/10.1111/1365-2745.12030. Search in Google Scholar

Cardenas, R., Donos, D.A., Argoti, A., Dangles, O., 2017. Functional consequences of realistic extinction scenarios in Amazonian soil food webs. Ecosphere, 8: e01692. https://doi.org/10.1002/ecs2.1692. Search in Google Scholar

Castillo-Figueroa, D., 2021. Carbon cycle in tropical upland ecosystems: a global review. Web Ecology, 21: 109–136. https://doi.org/10.5194/we-21-109-2021. Search in Google Scholar

Castillo-Figueroa, D., González-Melo, A. Posada, J.M., 2023. Wood density is related to aboveground biomass and productivity along a successional gradient in upper Andean tropical forests. Frontiers in Plant Science, 14: 1276424. https://doi.org/10.3389/fpls.2023.1276424 Search in Google Scholar

Castrillón-Cardona, W.F., Matulevich-Peláez, J., Díaz-Barrera, L.X., Vasco-Zamudio, S.P., 2015. Composición química de los aceites esenciales de Cavendishia compacta y Cavendishia guatapeensis (Ericaceae) [Chemical composition of the essential oils Cavendishia compacta and Cavendishia guatapeensis (Ericaceae)]. Tecnura, 19: 153–157. https://doi.org/10.14483/udistrital.jour.tecnura.2015.SE1.a13. Search in Google Scholar

Chazdon, R.L., 2014. Second growth: the promise of tropical forest regeneration in an age of deforestation. Londres: The University of Chicago Press. 472 p. Search in Google Scholar

Chazdon, R.L., Broadbent, E.N., Rozendaal, D.M., Bongers, F., Zambrano, A.M., Aide, T. M., Balvanera, P., Becknell, J.M., Boukili, V., Brancalion, P.H., Craven, D., Almeida-Cortez, J.S., Cabral, G.A., de Jong, B., Denslow, J.S., Dent, D.H., DeWalt, S.J., Dupuy, J.M., Durán, S.M., Espírito-Santo, M.M., Fandino, M.C., César, R.G., Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Junqueira, A.B., Kennard, D., Letcher, S.G., Lohbeck, M., Martínez-Ramos, M., Massoca, P., Meave, J.A., Mesquita, R., Mora, F., Muñoz, R., Muscarella, R., Nunes, Y.R., Ochoa-Gaona, S., Orihuela-Belmonte, E., Peña-Claros, M., Pérez-García, E.A., Piotto, D., Powers, J.S., Rodríguez-Velazquez, J., Romero-Pérez, I.E., Ruíz, J., Saldarriaga, J.G., Sanchez-Azofeifa, A., Schwartz, N.B., Steininger, M.K., Swenson, N.G., Uriarte, M., van Breugel, M., van der Wal, H., Veloso, M.D., Vester, H., Vieira, I.C., Bentos, T.V., Williamson, G.B., Poorter, L., 2016. Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2: e1501639. https://doi.org/10.1126/sciadv.1501639. Search in Google Scholar

Chua, S.C., Potts, M.D., 2018. The role of plant functional traits in understanding forest recovery in wet tropical secondary forests. Science of the Total Environment, 642: 1252–1262. https://doi.org/10.1016/j.scitotenv.2018.05.397. Search in Google Scholar

DANE – Departamento Nacional de Estadística, 2005. Atlas estadístico de Colombia [Statistical atlas of Colombia]. [online]. [cit. 2023-06-19]. http://sige.dane.gov.co/atlasestadistico/. Search in Google Scholar

Duque, A., Peña, M.A., Cuesta, F., González-Caro, S., Kennedy, P., Phillips, O. L., Calderón-Loor, M., Blundo, C., Carilla, J., Cayola, L., Farfán-Ríos, W., Fuentes, A., Grau, R., Homeier, J., Loza-Rivera, M.I., Malhi, Y., Malizia, A., Malizia, L., Martínez-Villa, J.A., Myers, J.A., Osinaga-Acosta, O., Peralvo, M., Pinto, E., Saatchi, S., Silman, M., Tello, J.S., Terán-Valdez, A., Feeley, K.J., 2021. Mature Andean forests as globally important carbon sinks and future carbon refuges. Nature Communications, 12: 2138. https://doi.org/10.1038/s41467-021-22459-8. Search in Google Scholar

Esquivel, J., Park, B., Casanoves, F., Delgado, D., Park, G.E., Finegan, B., 2020. Altitude and species identity drive leaf litter decomposition rates of ten species on a 2950 m altitudinal gradient in Neotropical rain forests. Biotropica, 52: 11–21. https://doi.org/10.1111/btp.12730. Search in Google Scholar

Etter, A., McAlpine, C., Possingham, H., 2008. A historical analysis of the spatial and temporal drivers of landscape change in Colombia since 1500. Annals of the Association of American Geographers, 98: 2–23. https://doi.org/10.1080/00045600701733911. Search in Google Scholar

Etter, A., Andrade, A., Saavedra, K., Amaya, P., Cortés, J. Arévalo, P., 2021. Ecosistemas colombianos. Amenazas y riesgos [Colombian ecosystems. Threats and risks]. Bogotá: Editorial Pontificia Universidad Javeriana. 34 p. Search in Google Scholar

Four, B., Cárdenas, R.E., Dangles, O., 2019. Traits or habitat? Disentangling predictors of leaf-litter decomposition in Amazonian soils and streams. Ecosphere, 10: e02691. https://doi.org/10.1002/ecs2.2691. Search in Google Scholar

García-Palacios, P., Maestre, F.T., Kattge, J., Wall, D.H., 2013. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecology Letters, 16: 1045–1053. https://doi.org/10.1111/ele.12137. Search in Google Scholar

Giweta, M., 2020. Role of litter production and its decomposition, and factors affecting the processes in a tropical forest ecosystem: a review. Journal of Ecology and Environment, 44: 11. https://doi.org/10.1186/s41610-020-0151-2. Search in Google Scholar

Hättenschwiler, S., Tiunov, A.V., Scheu, S., 2005. Bio-diversity and litter decomposition in terrestrial ecosystems. The Annual Review of Ecology, Evolution, and Systematics, 36: 191–218. https://doi.org/10.1146/annurev.ecolsys.36.112904.151932. Search in Google Scholar

Homeier, J., Seeler, T., Pierick, K., Leuschner, C., 2021. Leaf trait variation in species-rich tropical Andean forests. Scientific Reports, 11: 9993. https://doi.org/10.1038/s41598-021-89190-8. Search in Google Scholar

Hurtado-M., A.B., Echeverry-Galvis, M.A., Salgado-Negret, B., Muñoz, J.C., Posada, J. M., Norden, N., 2021. Little trace of floristic homogenization in peri-urban Andean secondary forests despite high anthropogenic transformation. Journal of Ecology, 109: 1468–1478. https://doi.org/10.1111/1365-2745.13570. Search in Google Scholar

Illig, J., Schatz, H., Scheu, S., Maraun, M., 2008. Decomposition and colonization by microarthropods of two litter types in a tropical montane rain forest in southern Ecuador. Journal of Tropical Ecology, 24: 157167. https://doi.org/10.1017/S0266467407004750. Search in Google Scholar

Illig, J., Norton, R.A., Scheu, S., Maraun, M., 2010. Density and community structure of soil- and bark-dwelling microarthropods along an altitudinal gradient in a tropical montane rainforest. Experimental and Applied Acarology, 52: 49–62. https://doi.org/10.1007/s10493-010-9348-x. Search in Google Scholar

JASP Team, 2023. JASP (Version 0.17.20). [online]. [cit. 2023-06-19]. https://jasp-stats.org/. Search in Google Scholar

Jewell, M.D., Shipley, B., Paquette, A., Messier, C., Reich, P.B., 2015. A traits-based test of the home-feld advantage in mixed-species tree litter decomposition. Annals of Botany, 116: 781–788. https://doi.org/10.1093/aob/mcv105. Search in Google Scholar

Krishna, M.P., Mohan, M., 2017. Litter decomposition in forest ecosystems: a review. Energy, Ecology and Environment, 2: 236–249. https://doi.org/10.1007/s40974-017-0064-9. Search in Google Scholar

Laigle, I., Moretti, M., Rousseau, L., Gravel, D., Venier, L., Handa, T., Messier, C., Morris, D., Hazlett, P., Fleming, R., Webster, K., Shipley, B., Aubin, I., 2021. Direct and indirect effects of forest anthropogenic disturbance on above and below ground communities and litter decomposition. Ecosystems, 24: 1716–1737. https://doi.org/10.1007/s10021-021-00613-z. Search in Google Scholar

Liu, J., Liu, X., Song, Q., Compson, Z.G., LeRoy, C.J., Luan, F., Wang, H., Hu, Y., Yang, Q., 2020. Synergistic effects: a common theme in mixed-species litter decomposition. New Phytologist, 227: 757–765. https://doi.org/10.1111/nph.16556. Search in Google Scholar

Makkonen, M., Berg, M.P., van Logtestijn, R.S., van Hal, J R., Aerts, R., 2013. Do physical plant litter traits explain non-additivity in litter mixtures? A test of the improved microenvironmental conditions theory. Oikos, 122: 987–997. https://doi.org/10.1111/j.1600-0706.2012.20750.x. Search in Google Scholar

Malhi, Y., Silman, M., Salinas, N., Bush, M., Meir, P., and Saatchi, S., 2010. Introduction: elevation gradients in the tropics: laboratories for ecosystem ecology and global change research. Global Change Biology, 16: 3171–3175. https://doi.org/10.1111/j.1365-2486.2010.02323.x. Search in Google Scholar

Maraun, M., Illig, J., Sandmann, D., Krashevska, V., Norton, R.A., Scheu, S. 2008. Soil fauna. In Beck, E., Bendix, J., Kottke, I., Makeschin, F. (eds). Gradients in a tropical mountain ecosystem of Ecuador. Berlin, Heidelberg: Springer, p. 181–192. Search in Google Scholar

McArthur, J.V., Aho, J.M., Rader, R.B., Mills, G.L., 1994. Interspecific leaf interactions during decomposition in aquatic and floodplain ecosystems. Journal of the North American Benthological Society, 13: 57–67. https://doi.org/10.2307/1467265. Search in Google Scholar

Ministerio de Ambiente, 2020. Minambiente presenta plan de manejo de reserva forestal de los cerros orientales de Bogotá [Ministry of Environment presents a management plan for Bogotá’s Eastern Hills Forest Reserve]. [online]. [cit. 2022-06-12]. https://www.minambiente.gov.co/index.php/noticias-minambiente/2595-minambientepresenta-plan-de-manejo-de-reserva-forestal-de-loscerrosorientales-de-bogota. Search in Google Scholar

Moser, G., Leuschner, C., Hertel, D., Graefe, S., Soethe, N., Iost, S., 2011. Elevation effects on the carbon budget of tropical mountain forests (S Ecuador): the role of the belowground compartment. Global Change Biology, 17: 2211–2226. https://doi.org/10.1111/j.1365-2486.2010.02367.x, 2011. Search in Google Scholar

Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B., Kent, J., 2000. Biodiversity hotspots for conservation priorities. Nature, 403: 853–85. https://doi.org/10.1038/35002501. Search in Google Scholar

Myster, R.W., 2021. Introduction. In Myster, R.W., (ed). The Andean cloud forest. Cham: Springer, p. 1–23. Search in Google Scholar

Njoroge, D.M., Chen, S.C., Zou, J., Dossa, G.G.O., Cornelissen, J.H.C., 2022. Soil fauna accelerate litter mixture decomposition globally, especially in dry environments. Journal of Ecology, 110: 659–672. https://doi.org/10.1111/1365-2745.13829. Search in Google Scholar

Njoroge, D.M., Dossa, G.G.O., Ye, L., Lin, X., Schaefer, D., Tomlinson, K., Zuo, J., Cornelissen, J.H.C., 2023. Fauna access outweighs litter mixture effect during leaf litter decomposition. The Science of the Total Environment, 860: 160190. https://doi.org/10.1016/j.scitotenv.2022.160190. Search in Google Scholar

Nogueira, T.S.R., Passos, M.S., Nascimento, L.P.S., Arantes, M.B.S., Monteiro, N.O., Boeno, S.I.D.S., de Carvalho Junior, A., Azevedo, O.A., Terra, W.D.S., Vieira, M.G.C., Braz-Filho, R., Curcino Vieira, I.J., 2020. Chemical compounds and biologic activities: a review of Cedrela genus. Molecules (Basel, Switzerland), 25: 5401. https://doi.org/10.3390/molecules25225401. Search in Google Scholar

Patoine, G., Thakur, M.P., Friese, J., Nock, C., Hönig, L., Haase, J., Scherer-Lorenzen, M., Eisenhauer, N., 2017. Plant litter functional diversity effects on litter mass loss depend on the macro-detritivore community. Pedobiologia, 65: 29–42. https://doi.org/10.1016/j.pedobi.2017.07.003. Search in Google Scholar

Patoine, G., Bruelheide, H., Haase, J., Nock, C., Ohlmann, N., Schwarz, B., Scherer-Lorenzen, M., Eishenhauer, N., 2020. Tree litter functional diversity and nitrogen concentration enhance litter decomposition via changes in earthworm communities. Ecology and Evolution, 10: 6752–6768. https://doi.org/10.1002/ece3.6474. Search in Google Scholar

Paudel, E., Dossa, G.G.O., Blécourt, M., de, Beckschäfer, P., Xu, J., Harrison, R.D., 2015. Quantifying the factors affecting leaf litter decomposition across a tropical forest disturbance gradient. Ecosphere, 6:1–20. https://doi.org/10.1890/ES15-00112.1. Search in Google Scholar

Peguero, G., Sardans, J., Asensio, D., Fernandez-Martínez, M., Gargallo-Garriga, A., Grau, O., Llusiá, J., Margalef, O., Márquez, L., Ogaya, R., Urbina, I., Courtois, E.A., Stahl, C., Van Langenhove, L., Verryckt, L.T., Ritcher, A., Janssens, I.A., Peñuelas, J., 2019. Nutrient scarcity strengthens soil fauna control over leaf litter decomposition in tropical rainforests. Proceedings of the Royal Society B: Biological Sciences, 286: 20191300. https://doi.org/10.1098/rspb.2019.1300. Search in Google Scholar

Pierick, K., Leuschner, C., Homeier, J., 2021. Topography as a factor driving small-scale variation in tree fine root traits and root functional diversity in a species-rich tropical montane forest. New Phytologist, 30: 129–138. https://doi.org/10.1111/nph.17136. Search in Google Scholar

Pinho, B.X, Melo F.P.L., Arroyo-Rodríguez, V., Pierce, S., Lohbeck, M., Tabarelli, M., 2018. Soil-mediated filtering organizes plant assemblages in regenerating tropical forests. Journal of Ecology, 106: 137–147. https://doi.org/10.1111/1365-2745.12843. Search in Google Scholar

Porre, R.J., van der Werf, W., De Deyn, G.B., Stomph, T.J., Hoffland, E., 2020. Is litter decomposition enhanced in species mixtures? A meta-analysis. Soil Biology and Biochemistry, 145: 107791. https://doi.org/10.1016/j.soilbio.2020.107791. Search in Google Scholar

Poorter, L., Craven, D., Jakovac, C.C., van der Sande, M.T., Amissah, L., Bongers, F., Chazdon, R.L., Farrior, C.E., Kambach, S., Meave, J.A., Muñoz, R., Norden, N., Rüger, N., van Breugel, M., Almeyda Zambrano, A.M., Amani, B., Andrade, J.L., Brancalion, P.H.S., Broadbent, E.N., de Foresta, H., Dent, D.H., Derroire, G., DeWalt, S.J., Dupuy, J.M., Durán, S.M., Fantini, A.C., Finegan, B., Hernández-Jaramillo, A., Hernández-Stefanoni, J.L., Hietz, P., Junqueira, A.B., N’dja, J.K., Letcher, S.G., Lohbeck, M., López-Camacho, R., Martínez-Ramos, M., Melo, F.P.L., Mora, F., Müller, S.C., N’Guessan, A.E., Oberleitner, F., Ortiz-Malavassi, E., Pérez-García, E.A., Pinho, B.X., Piotto, D., Powers, J.S., Rodríguez-Buriticá, S., Rozendaal, D.M.A., Ruíz, J., Tabarelli, M., Teixeira, H.M., Valadares de Sá Barretto Sampaio, E., van der Wal, H., Villa, P.M., Fernandes, G.W., Santos, B.A., Aguilar-Cano, J., de Almeida-Cortez, J.S., Alvarez-Davila, E., Arreola-Villa, F., Balvanera, P., Becknell, J.M., Cabral, G.A.L., Castellanos-Castro, C., de Jong, B.H.J., Nieto, J.E., Espírito-Santo, M.M., Fandino, M.C., García, H., García-Villalobos, D., Hall, J.S., Idárraga, A., Jiménez-Montoya, J., Kennard, D., Marín-Spiotta, E., Mesquita, R., Nunes, Y.R.F., Ochoa-Gaona, S., Peña-Claros, M., Pérez-Cárdenas, N., Rodríguez-Velázquez, J., Villanueva, L.S., Schwartz, N.B., Steininger, M.K., Veloso, M.D.M., Vester, H.F.M., Vieira, I.C.G., Williamson, G.B., Zanini, K., Hérault, B., 2021a. Multidimensional tropical forest recovery. Science, 374: 1370–1376. https://doi.org/10.1126/science.abh3629. Search in Google Scholar

Poorter, L., Rozendaal, D.M.A., Bongers, F., Almeida, J.S., Álvarez, F.S., Andrade, J.L., Arreola Villa, L.F., Becknell, J.M., Bhaskar, R., Boukili, V., Branca-lion, P.H.S., César, R.G., Chave, J., Chazdon, R.L., Dalla Colletta, G., Craven, D., de Jong, B.H.J., Denslow, J.S., Dent, D.H., DeWalt, S.J., Díaz García, E., Dupuy, J.M., Durán, S.M., Espírito Santo, M.M., Fernandes, G.W., Finegan, B., Granda Moser, V., Hall, J.S., Hernández-Stefanoni, J.L., Jakovac, C.C., Kennard, D., Lebrija-Trejos, E., Letcher, S.G., Lohbeck, M., Lopez, O.R., Marín-Spiotta, E., Martínez-Ramos, M., Meave, J.A., Mora, F., de Souza Moreno, V., Müller, S.C., Muñoz, R., Muscarella, R., Nunes, Y.R.F., Ochoa-Gaona, S., Oliveira, R.S., Paz, H., Sanchez-Azofeifa, A., Sanaphre-Villanueva, L., Toledo, M., Uriarte, M., Utrera, L.P., van Breugel, M., van der Sande, M.T., Veloso, M.D.M., Wright, S.J., Zanini, K.J., Zimmerman, J.K., Westoby, M., 2021b. Functional recovery of secondary tropical forests. Proceedings of the National Academy of Sciences of the United States of America, 118: e2003405118. https://doi.org/10.1073/pnas.2003405118, Search in Google Scholar

Rahbek, C., Borregaard, M.K., Colwell, R.K., Dalsgaard, B., Holt, B.G., Morueta-Holme, N., Nogues-Bravo, D., Whittaker, R.J., Fjeldså, J., 2019. Humboldt’s enigma: What causes global patterns of mountain bio-diversity? Science, 365: 1108–1113. https://doi.org/10.1126/science.aax0149. Search in Google Scholar

Ren, X., He, T., Chang, Y., Zhao, Y., Chen, X., Bai, S., Wang, L., Shen, M., She, G., 2017. The genus Alnus, a comprehensive outline of its chemical constituents and biological activities. Molecules, 22: 1383. https://doi.org/10.3390/molecules22081383. Search in Google Scholar

Ristok, C., Leppert, K.N., Scherer-Lorenzen, M., Niklaus, P.A., Bruelheide, H., 2019. Soil macrofauna and leaf functional traits drive the decomposition of secondary metabolites in leaf litter. Soil Biology and Biochemistry, 135: 429–437. https://doi.org/10.1016/j.soilbio.2019.06.007. Search in Google Scholar

Rosenfield, M.F., Jakovac, C.C., Vieira, D.L.M., Poorter, L., Brancalion, P.H.S., Vieira, I.C.G., de Almeida, D.R.A., Massoca, P., Schietti, J., Albernaz, A.L.M., Ferreira, M.J. Mesquita, R.C.G., 2023. Ecological integrity of tropical secondary forests: concepts and indicators. Biological Reviews, 98: 662–676. https://doi.org/10.1111/brv.12924. Search in Google Scholar

Ruess, L., Lussenhop, J., 2005. Trophic interactions of fungi and animals. In Dighton, J., Oudemans, P., White, J. (eds). The fungal community: its organization and role in the ecosystem. Boca Raton: CRC, p. 581–598. Search in Google Scholar

Salinas, N., Malhi, Y., Meir, P., Silman, M., Roman-Cuesta, R., Huaman, J., Salinas, D., Huaman, V., Gibaja, A., Mamani, M., Farfan F., 2011. The sensitivity of tropical leaf litter decomposition to temperature: results from a large-scale leaf translocation experiment along an elevation gradient in Peruvian forests. New Phytologist, 189: 967–977. https://doi.org/10.1111/j.1469-8137.2010.03521.x. Search in Google Scholar

Sánchez-Galindo, L.M., Sandmann, D., Marian, F., Lauermann, T., Maraun, M., Scheu, S., 2022. Differences in leaf and root litter decomposition in tropical montane rainforests are mediated by soil micro-organisms not by decomposer microarthropods. PeerJ, 10: e14264. https://doi.org/10.7717/peerj.14264. Search in Google Scholar

Scheu, S., Illig, J., Eissfeller, V., Krashevska, V., Sandmann, D., Maraun, M., 2008. The soil fauna of a tropical mountain rainforest in southern Ecuador: structure and functioning. In Gradstein, S.R., Gansert, D., Homeier, J. (eds). The tropical mountain forest. Patterns and processes in a biodiversity hotspots. Göttingen: Universitätsverlag Göttingen, p. 79–96. Search in Google Scholar

Seidelmann, K.N., Scherer-Lorenzen, M., Niklaus, P.A., 2016. Direct vs. microclimate-driven effects of tree species diversity on litter decomposition in young subtropical forest stands. PLoS ONE, 11: e0160569. https://dx.doi.org/10.1371/journal.pone.0160569. Search in Google Scholar

Swift, M.J., Heal, O.W., Anderson, J.M., 1979. Decomposition in terrestrial ecosystems. Studies in ecology. Oxford, UK: Blackwell Scientific. 372 p. Search in Google Scholar

Varela, A., Cortés, C., Cotes, C., 2007. Cambios en edafofauna asociada a descomposición de hojarasca en un bosque nublado [Changes in soil fauna associated with litterfall decomposition in a cloud forest]. Revista Colombiana de Entomología, 33: 45–53. Search in Google Scholar

Wright, I.J., Reich, P.B., Westoby, M., Ackerly, D.D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J.H., Diemer, M., Flexas, J., Garnier, E., Groom, P.K., Gulias, J., Hikosaka, K., Lamont, B.B., Lee, T., Lee, W., Lusk, C., Midgley, J.J., Navas, M.L., Niinemets, U., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V.I., Roumet, C., Thomas, S.C., Tjoelker, M.G., Veneklaas, E.J., Villar, R., 2004. The worldwide leaf economics spectrum. Nature, 22: 821–827. https://doi.org/10.1038/nature02403. Search in Google Scholar

Xuluc-Tolosa, F.J., Vester, H.F.M., Ramírez-Marcial, N., Castellanos-Albores, J., Lawrence, D., 2003. Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. Forest Ecology and Management, 174: 401–412. https://doi.org/10.1016/S0378-1127(02)00059-2. Search in Google Scholar

Yang, K., Zhu, J., Zhang, W., Zhang, Q., Lu, D., Zhang, Y., Zheng, X., Xu, S., Wang, G.G., 2022. Litter decomposition and nutrient release from monospecific and mixed litters: comparisons of litter quality, fauna and decomposition site effects. Journal of Ecology. 110: 673–1686. https://doi.org/10.1111/1365-2745.13902. Search in Google Scholar

Zhang, D., Hui, D., Luo, Y., Zhou, G., 2008. Rates of litter decomposition in terrestrial ecosystems: global patterns and controlling factors. Journal of Plant Ecology, 1: 85–93. https://doi.org/10.1093/jpe/rtn002. Search in Google Scholar

Zhou, S., Butenschoen, O., Barantal, S., Handa, I.T., Makkonen, M., Vos, V., Aerts, R., Berg, M.P., McKie, B., Van Ruijven, J., Hättenschwiler, S., Scheu, S., 2020. Decomposition of leaf litter mixtures across biomes: the role of litter identity, diversity and soil fauna. Journal of Ecology, 108: 2283–2297. https://doi.org/10.1111/1365-2745.13452. Search in Google Scholar

Zou, Y.P., Tan, C.H., Wang, B.D., Zhu, D.Y., Kim, S.K., 2008. Chemical constituents from Myrsine africana L. Helvetica Chimica Acta, 91: 2168–2173. https://doi.org/10.1002/hlca.200890234. Search in Google Scholar

eISSN:
1338-7014
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Life Sciences, other, Plant Science, Zoology, Ecology