Accès libre

The role of biocrust-induced exopolymeric matrix in runoff generation in arid and semiarid zones – a mini review

À propos de cet article

Citez

Belnap, J., 2006. The potential roles of biological soil crusts in dryland hydrologic cycles. Hydrol. Process., 20, 3159–3178.10.1002/hyp.6325 Search in Google Scholar

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull., 24, 43–69. DOI: 10.1080/0262666790949183410.1080/02626667909491834 Search in Google Scholar

Beysens, D., 2018. Dew Water. River Publishers, Gistrup, Denmark. Search in Google Scholar

Blackburn, W.H., 1975. Factors influencing infiltration and sediment production of semiarid rangelands in Nevada. Water Resour. Res., 6, 929–937. DOI: 10.1029/WR011i006p0092910.1029/WR011i006p00929 Search in Google Scholar

Brotherson, J.D., Rushforth, S.R., 1983. Influence of cryptogamic crusts on moisture relationships of soils in Navajo National Monument, Arizona. Great Basin Natur., 43, 73–78. Search in Google Scholar

Brüll, L.P., Huang, Z., Thomas-Oates, J.E., Paulsen, B.S., Cohen, E.H., Michaelsen, T.E., 2000. Studies of polysaccha-rides from three edible species of Nostoc (cyanobacteria) with different colony morphologies: Structural characterization and effect on the complement system of polysaccharides from Nostoc commune. J. Phycol., 36, 871–881.10.1046/j.1529-8817.2000.00038.x Search in Google Scholar

Cammeraat, E.L.H., 2004. Scale dependent thresholds in hydro-logical and erosion response of a semi-arid catchment in southeast Spain. Agric. Ecosys. Environ., 104, 317–332. DOI: 10.1016/j.agee.2004.01.03210.1016/j.agee.2004.01.032 Search in Google Scholar

Campbell, S.E., 1979. Soil stabilization by prokaryotic desert crusts: Implications for Precambrian land biota. Orig. Life, 9, 335–348.10.1007/BF00926826116183 Search in Google Scholar

Cantón, Y., Chamizo, S., Rodríguez-Caballero, E., Lazáro, R., Roncero-Ramos, B., Roman, J.R., Solé-Benet, A., 2020. Water regulation in cyanobacterial biocrusts from drylands: Negative impacts of anthropogenic disturbance. Water, 12, 720. https://doi.org/10.3390/w1203072010.3390/w12030720 Search in Google Scholar

Chamizo, S., Cantón, Y., Lázaro, R., Domingo, F., 2013. The role of biological soil crusts in soil moisture dynamics in two semiarid ecosystems with contrasting soil textures. J. Hydrol., 489, 74–84.10.1016/j.jhydrol.2013.02.051 Search in Google Scholar

Chamizo, S., Cantón, Y., Rodríguez-Caballero, E., Domingo, F., Escudero, A., 2012. Runoff of contrasting scales in a semiarid ecosystem: A complex balance between biological soil crust features and rainfall characteristics. J. Hydrol., 452–453, 130–138.10.1016/j.jhydrol.2012.05.045 Search in Google Scholar

Chamizo, S., Belnap, J., Eldridge, D.J., Cantón, Y., Malam-Issa, O., 2016. The role of biocrusts in arid land hydrology. In: Weber, B., Büdel. B., Belnap. J. (Eds.): Biological Soil Crusts: An Organizing Principle in Dryland. Ecological Studies 226. Springer, Switzerland, pp. 321–346.10.1007/978-3-319-30214-0_17 Search in Google Scholar

Chamizo, S., Adessi, A., Mugnai, G., Simiani, A., De Philippis, R., 2019. Soil type and cyanobacteria species influence the macromolecular and chemical characteristics of the polysaccharide matrix in induced biocrusts. Microbial Ecol., 78, 482–493. DOI: 10.1007/s00248-018-1305-y10.1007/s00248-018-1305-y Search in Google Scholar

Chen, L.Z., Wang, G.H., Hong, S., Liu, A., Li, C., Liu, Y.D., 2009. UV-B-induced oxidative damage and protective role of exopolysaccharides in desert cyanobacterium Microcoleus vaginatus. J. Integrat. Plant Biol., 51, 2, 194–200. DOI: 10.1111/j.1744-7909.2008.00784.x10.1111/j.1744-7909.2008.00784.x Search in Google Scholar

Chen, Y., Tarchitzky, J., Brouwer, J. Morin, J., Banin, A., 1980. Scanning electron microscope observations in soil crusts and their formation. Soil Sci., 130, 49–55.10.1097/00010694-198007000-00008 Search in Google Scholar

Chenu, C., 1993. Clay-or sand- polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma, 56, 143–156.10.1016/B978-0-444-81490-6.50016-9 Search in Google Scholar

Colica, G., Li, H., Rossi, F., Li, D., Liu, Y., De Philippis, R., 2014. Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol. Biochem., 68, 62–70.10.1016/j.soilbio.2013.09.017 Search in Google Scholar

De Brouwer, J.F.C., Stal, L.J., 2001. Short-term dynamics in microphytobenthos distribution and associated extracellular carbohydrates in surface sediments of the intertidal mudflat. Marine Ecol. Progress Series, 218, 33–44.10.3354/meps218033 Search in Google Scholar

de Jong, S.M., Addink, E.A., Van Beek, L.P.H., Duijsings, D., 2011. Physical characterization, spectral response and remotely sensed mapping of Mediterranean soil surface crusts. Catena, 86, 24–35.10.1016/j.catena.2011.01.018 Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 1994. How water moves in a water repellent sandy soil. 1. Potential and actual water repellency. Water Resour. Res., 30, 2507–2517.10.1029/94WR00749 Search in Google Scholar

Dekker, L.W., Ritsema, C.J., 2000. Wetting patterns and moisture variability in water repellent Dutch soils. J. Hydrol., 231–232, 148–164.10.1016/S0022-1694(00)00191-8 Search in Google Scholar

De Philippis, R., 2015. The stability and the hydrological behavior of biological soil crusts is significantly affected by the complex nature of their polysaccharide matrix. EGU General Assembly, 12–17 April, 2015, Vienna, Austria. ID: 3513. Search in Google Scholar

Demig, J.W., Young, J.N., 2017. The role of exopolysaccha-rides in microbial adaptation to cold habitats. In: Margesin, R. (Ed.): Psychrophiles: From Biodiversity to Biotechnology. Springer Inter Pub. AG. DOI: 10.1007/978-3=319-57057-0-0122. Search in Google Scholar

Doerr, S.H., Shakesby, R.A., Dekker, L.W., Ritsema, C.J., 2006. Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate. Eur. J. Soil Sci., 57, 741–754.10.1111/j.1365-2389.2006.00818.x Search in Google Scholar

Drahorad, S., Steckenmesser, D., Felix-Henningsen, P., Lichner, L., Rodny, M., 2013. Ongoing succession of biological soil crusts increases water repellency – a case study on Arenosols in Sekule, Slovakia. Biologia, 68, 1089–1093.10.2478/s11756-013-0247-6 Search in Google Scholar

Dunkerley, D., 2000. Hydrological effects of dryland shrubs: defining the spatial extent of modified soil water uptake rates at an Australian desert site. J. Arid Environ., 45, 159–172. DOI: 10.1006/jare.2000.063610.1006/jare.2000.0636 Search in Google Scholar

Dunne, T., 1990. Hydrology, mechanics, and geomorphic implications of erosion by subsurface flow. In: Higgins, C.G., Coates, D.R. (Eds.): Groundwater Geomorphology: The Role of Subsurface Water in Earth-Surface Processes and Landforms. Geological Society of America, Special Paper 252, pp. 1–28.10.1130/SPE252-p1 Search in Google Scholar

Dunne, T., Black, R.D., 1970. An experimental investigation of runoff production in permeable soils. Water Resour. Res., 6, 478–490. DOI: 10.1029/WR006i002p0047810.1029/WR006i002p00478 Search in Google Scholar

Ehling-Schulz, M., Schere, S., 1999. UV protection in cyano-bacteria. Eur. J. Phycol., 34, 329–338.10.1080/09670269910001736392 Search in Google Scholar

Epstein, E., Grant, W.J., 1993. Soil crust formation as affected by raindrop impact. In: Hadas, A., Swartzendruber, D., Ritjema, P.E., Fuchs, M., Yaron, B. (Eds.): Physical Aspects of Soil Water and Salts in Ecosystems. Springer, Berlin and Heidelberg, pp. 195–201.10.1007/978-3-642-65523-4_20 Search in Google Scholar

Felde, V.J.M.N.L., Peth, S., Uteau-Puschmann, D., Drahorad, S., Felix-Henningsen, P., 2014. Soil microstructure as an under-explored feature of biological soil crust hydrological properties: case study from the NW Negev Desert. Bio-divers. Conserv., 23, 1687–1708.10.1007/s10531-014-0693-7 Search in Google Scholar

Fick, S.E., Barger, N.N., Duniway, M.C., 2019. Hydrological function of rapidly induced biocrusts. Ecohydrology, 12, e2089. DOI: 10.1002/eco.208910.1002/eco.2089 Search in Google Scholar

Fischer, T., Veste, M., Wiehe, W., Lange, P., 2010. Water repellency and pore clogging at early successional stages of microbiotic crusts on inland dunes, Brandenburg, NE Germany. Catena, 80, 47–52. DOI: 10.1016/j.catena.2009.08.00910.1016/j.catena.2009.08.009 Search in Google Scholar

Fischer, T., Veste, M., Bens, O., Hüttl, R.F., 2012. Dew formation on the surface of biological soil crusts in central European sand ecosystems. Biogeosciences, 9, 4621–4628.10.5194/bg-9-4621-2012 Search in Google Scholar

Fischer, T., Yair, A., Veste, M., Geppet, H., 2013. Hydraulic properties of biological soil crusts on sand dunes studied by 13C-CP/MAS-NMR: A comparison between an arid and temperate site. Catena, 110, 155–160.10.1016/j.catena.2013.06.002 Search in Google Scholar

Fox, D.M., Bryan, R.B., Price, A.G., 2004. The role of soil surface crusting in desertification and strategies to reduce crusting. Environ. Monitor. Assess., 99, 149–159.10.1007/s10661-004-4015-5 Search in Google Scholar

Francis, M.L., Fey, M.V., Prinsloo, H.P., Ellis, F., Mills, A.J., Medinski, T.V., 2007. Soils of Namaqualand: Compensations for aridity. J. Arid Environ., 70, 588–603.10.1016/j.jaridenv.2006.12.028 Search in Google Scholar

Galle, S., Arendt, E.K., 2014. Exopolysaccharides from sourdough lactic acid bacteria. Critical Rev. Food Sci. Nutr., 54, 891–901. DOI: 10.1080/10408398.2011.61747410.1080/10408398.2011.617474 Search in Google Scholar

Hagemann, M., Henneberg, M., Felde, V.J.M.N.L., Drahorad, S.L., Berkowicz, S.M., Felix-Henningsen, P. Kaplan, A., 2015. Cyanobacterial diversity in biological soil crusts along a precipitation gradient, Northwest Negev Desert, Israel. Microbiol. Ecol., 70, 219–230.10.1007/s00248-014-0533-z Search in Google Scholar

Hallett, P.D., 2008. A brief overview of the causes, impacts and melioration of soil water repellency – a review. Soil Water Res., 3, S21–S29.10.17221/1198-SWR Search in Google Scholar

Harper, K.T., Marble, J.R., 1988. A role for nonvascular plants in management of arid and semiarid rangelands. In: Tuller, P.T. (Ed.): Applications of Plant Sciences to Rangeland Management and Inventory. Kluwer, Amsterdam, pp. 135–169.10.1007/978-94-009-3085-8_7 Search in Google Scholar

Heil, J.W., Juo, A.S.R., McInnes, K.J., 1997. Soil properties influencing surface sealing of some sandy soils in the Sahel. Soil Sci., 162, 459–469.10.1097/00010694-199707000-00001 Search in Google Scholar

Horton, R.E., 1933. The role of infiltration in the hydrological cycle. EOS Transactions AGU, 14, 446–460. DOI: 10.1029/TR014;001p00446 Search in Google Scholar

Jia, R.L., Li, X.R., Liu, L.C., Pan, Y.X., Gao, Y.H., Wei, Y.P., 2014. Effects of sand burial on dew deposition on moss soil crust in a revegetated area of the Tengger Desert, Northern China. J. Hydrol., 519, 2341–2349.10.1016/j.jhydrol.2014.10.031 Search in Google Scholar

Jungerius, D., van der Meulen, F., 1988. Erosion processes in a dune landscape along the Dutch coast. Catena, 15, 217–228.10.1016/0341-8162(88)90046-X Search in Google Scholar

Jungerius, P.D., de Jong, J.H., 1989. Variability of water repellence in the dunes along the Dutch coast. Catena, 16, 491–497.10.1016/0341-8162(89)90030-1 Search in Google Scholar

Kato, H., Onda, Y., Tanaka, Y., Asano, M., 2009. Field measurement of infiltration rate using an oscillating nozzle rainfall simulator in the cold, semiarid grassland of Mongolia. Catena, 76, 173–181. DOI: 10.1016/j.catena.2008.11.00310.1016/j.catena.2008.11.003 Search in Google Scholar

Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Henningsen, P., 2013. Effects of biological soil crusts on water repellency in a sand dune ecosystem of the NW Negev, Israel. Second Intgernational Workshop on Biological Soil Crusts, Madrid, 10th–13th June, 2013. Search in Google Scholar

Keck, H., Felde, V.J.M.N.L., Drahorad, S.L., Felix-Hennigsen, P., 2016. Biological soil crusts cause subcritical water repellency in a sand dune ecosystem located along a rainfall gradient in the NW Negev Desert, Israel. J. Hydrol. Hydro-mech., 64, 133–140.10.1515/johh-2016-0001 Search in Google Scholar

Kidron, G.J., 1999. Differential water distribution over dune slopes as affected by slope position and microbiotic crust, Negev Desert, Israel. Hydrol. Process., 13, 1665–1682. DOI: 10.1002/(SICI)1099-1085(19990815) Search in Google Scholar

Kidron G.J., 2011. Runoff generation and sediment yield on homogeneous dune slopes: scale effect and implications for analysis. Earth Surf. Process. Landf., 36, 1809–1824. DOI: 10.1002/esp.220310.1002/esp.2203 Search in Google Scholar

Kidron, G.J., 2015. The role of crust thickness in runoff generation from microbiotic crusts. Hydrol. Process., 29, 1783–1792. DOI: 10.1002/hyp.1024310.1002/hyp.10243 Search in Google Scholar

Kidron, G.J., 2021. Comparing overland flow processes between semiarid and humid regions: Does saturation overland flow take place in semiarid regions? J. Hydrol., 593, 125624. DOI: 10.1016/j.jhydrol.2020.12562410.1016/j.jhydrol.2020.125624 Search in Google Scholar

Kidron, G.J., Büdel, B., 2014. Contrasting hydrological response of coastal and desert biocrusts. Hydrol. Process., 28, 361–371. DOI: 10.1002/hyp.958710.1002/hyp.9587 Search in Google Scholar

Kidron, G.J., Kronenfeld, R., 2020a. Assessing the likelihood of the soil surface to condense vapor: The Negev experience. Ecohydrology, 13, e2200. DOI: 10.1002/eco.220010.1002/eco.2200 Search in Google Scholar

Kidron, G.J., Kronenfeld, R., 2020b. Atmospheric humidity is unlikely to serve as an important water source for crustose soil lichens in the Tabernas Desert. J. Hydrol. Hydromech., 68, 359–367. DOI: 10.2478/johh-2020-003410.2478/johh-2020-0034 Search in Google Scholar

Kidron, G.J., Starinsky, A., 2019. Measurements and ecological implications of non-rainfall water in desert ecosystems – A review. Ecohydrology, 12, e2121. DOI: 10.1002/eco.212110.1002/eco.2121 Search in Google Scholar

Kidron, G.J., Tal, S.Y., 2012. The effect of biocrusts on evaporation from sand dunes in the Negev Desert. Geoderma, 179-180, 104–112. DOI: 10.1016/j.geoderma.2012.02.02110.1016/j.geoderma.2012.02.021 Search in Google Scholar

Kidron, G.J., Yair, A., 1997. Rainfall-runoff relationships over encrusted dune surfaces, Nizzana, Western Negev, Israel. Earth Surf. Process. Landf., 22, 1169–1184. DOI: 10.1002/esp.153210.1002/esp.1532 Search in Google Scholar

Kidron, G.J., Yaalon, D.H., Vonshak, A., 1999. Two causes for runoff initiation on microbiotic crusts: hydrophobicity and pore clogging. Soil Sci. 164, 18–27.10.1097/00010694-199901000-00004 Search in Google Scholar

Kidron, G.J., Herrnstadt, I., Barzilay, E., 2002. The role of dew as a moisture source for sand microbiotic crusts in the Negev Desert, Israel. J. Arid Environ., 52, 517–533. DOI: 10.1016/jare.2002.1014 Search in Google Scholar

Kidron, G.J., Wang, Y., Herzberg, M., 2020. Exopolysaccharides may increase biocrust rigidity and induce runoff generation. J. Hydrol., 588, 125081. DOI: 10.1016/J.JHYDROL.2020.12508110.1016/j.jhydrol.2020.125081 Search in Google Scholar

Kidron, G.J., Yair, A., Vonshak, A., Abeliovich A., 2003. Microbiotic crust control of runoff generation on sand dunes in the Negev Desert. Water Resour. Res., 39, 1108. DOI: 10.1029/2002WR001561.2003 Search in Google Scholar

Lange, O.L., Schulze, E.D., Koch, W., 1970. Ecophysiological investigations on lichens of the Negev Desert, III: CO2 gas exchange and water metabolism of crustose and foliose lichens in their natural habitat during the summer dry period. Flora, 159, 525–538. Search in Google Scholar

Lange, O.L., Belnap, J., Reichenberger, H., 1998. Photosynthesis of the cyanobacterial soil-crust lichen Collema tenax from arid lands in southern Utah, USA: role of water content on light and temperature response of CO2 exchange. Func. Ecol., 12, 195–202.10.1046/j.1365-2435.1998.00192.x Search in Google Scholar

Lange, O.L., Kidron, G.J., Büdel, B., Meyer, A., Kilian, E., Abeliovitch, A., 1992. Taxonomic composition and photo-synthetic characteristics of the biological soil crusts covering sand dunes in the Western Negev Desert. Func. Ecol., 6, 519–527.10.2307/2390048 Search in Google Scholar

Lázaro, R., Rodrigo, F.S., Gutiérrez, L., Domingo, F., Puigdegabregas, J., 2001. Analysis of 30-year rainfall record (1967-1997) in semi-arid SE Spain for implications on vegetation. J. Arid Environ., 48, 373–395.10.1006/jare.2000.0755 Search in Google Scholar

Li, S., Xiao, B., Sun F., Kidron, G.J., 2021. Moss-dominated biocrusts greatly enhance water vapor sorption capacity and increase non-rainfall water deposition in drylands. Geoderma, 388, 114930. DOI: 10.1016/j.geoderma.2021.11493010.1016/j.geoderma.2021.114930 Search in Google Scholar

Lichner, L., Hallett, P.D., Orfánus, T., Czachor, H., Rajkai, K., Šir, M., Tesař, M., 2010. Vegetation impact on the hydrology of an aeolian sandy soil in a continental climate. Ecohydrology, 3, 413–420.10.1002/eco.153 Search in Google Scholar

Lichner, L., Holko, L., Zhukova, N., Shacht, K., Rajkai, K., Fodor, N., Sándor, R., 2012. Plants and biological soil crust influence the hydrophysical parameters and water flow in an aeolian sandy soil. J. Hydrol. Hydromech., 60, 309–318.10.2478/v10098-012-0027-y Search in Google Scholar

Lichner, L., Hallett, P.D., Drongova, Z., Czachor, H., Kovacik, L., Mataix-Solera, J., Homolák, M., 2013. Algae influence the hydrophysical parameters of a sand soil. Catena, 108, 58–68.10.1016/j.catena.2012.02.016 Search in Google Scholar

Lichner, L., Felde, V.J.M.N.L., Büdel, B., Leue, M., Gerke, H.H., Ellerbrock, R.H., Kollár, J., Rodny, M., Šurda, P., Fodor, N., Sándor, R., 2018. Effect of vegetation and its succession on water repellency in sandy soils. Ecohydrology, 11, e1991. DOI: 10.1002/eco.199110.1002/eco.1991 Search in Google Scholar

Mager, D.M., Thomas, A.D., 2011. Extracellular polysaccha-rides from cyanobacterial soil crusts: A review of their role in dryland soil processes. J. Arid Environ., 75, 91–97.10.1016/j.jaridenv.2010.10.001 Search in Google Scholar

Malam-Issa, O., Défarge, C., Trichet, J., Valentin, C., Rajot, J.L., 2009. Microbiotic soil crusts in the Sahel of western Niger and their influence on soil porosity and water dynamics. Catena, 77, 48–55.10.1016/j.catena.2008.12.013 Search in Google Scholar

Mayor, A.G., Bautista, S., Bellot, J., 2009. Factors and interactions controlling infiltration, runoff, and soil loss at the microscale in a patchy Mediterranean semiarid landscape. Earth Surf. Process. Landf., 34, 1702–1711. DOI: 10.1002/esp.187510.1002/esp.1875 Search in Google Scholar

Mazor, G., Kidron, G.J., Vonshak, A., Abeliovich, A., 1996. The role of cyanobacterial exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol., 21, 121–130. DOI: 10.1111/j.1574-6941.1996.tb00339.x10.1111/j.1574-6941.1996.tb00339.x Search in Google Scholar

McIntyre, D.S., 1958. Soil splash and the formation of surface crusts by raindrop impact. Soil Sci., 85, 261–266.10.1097/00010694-195805000-00005 Search in Google Scholar

More, T.T., Yadav, J.S.S., Yan, S., Tyagi, R.D., Surampalli, R.Y., 2014. Extracellular polymeric substances of bacteria and their potential environmental applications. J. Environ. Manage., 144, 1–25. DOI: 10.1016/j.jenvman.2014.05.010.10.1016/j.jenvman.2014.05.01024907407 Search in Google Scholar

Mugnai, G., Rossi, F., Chamizo, S., Adessi, A., De Philippis, R., 2020a. The role of grain size and inoculums amount of biocrust formation by Leptolyngbya ohadii. Catena, 184, 104248. DOI: 10.1016/j.catena.2019.10424810.1016/j.catena.2019.104248 Search in Google Scholar

Mugnai, G., Rossi, F., Mascalchi, C., Ventura, S., De Philippis, R., 2020b. High arctic biocrusts: characterization of the exopolysaccharidic matrix. Polar Biol., 43, 1805–1815. DOI: 10.1007/s00300-020-02746-810.1007/s00300-020-02746-8 Search in Google Scholar

Mugnai, G., Rossi, F., Felde, V.J.M.N.L., Colesie, C., Büdel, B., Peth, S., Kaplan, A., De Philippis, R., 2018. Development of the polysaccharide matrix in biocrusts induced by a cyanobacterium inoculated in sand microcosms. Biol. Fert. Soils, 54, 27–40.10.1007/s00374-017-1234-9 Search in Google Scholar

Nagar, S., Antony, R., Thamban, M., 2021. Extracellular polymeric substances in Antarctic environments: A review of their ecological roles and impact on glacier biogeochemical cycles. Polar Sci. DOI: 10.1016/j.polar.2021.10068610.1016/j.polar.2021.100686 Search in Google Scholar

Nicolaus, B., Panico, A., Lama, L., Romano, I., Manca, M.C., De Giulio, A., Gambacorta, A., 1999. Chemical composition and production of exopolysaccharides from representative members of heterocystous and non-heterocystous cyanobacteria. Phytochemistry, 52, 639–647.10.1016/S0031-9422(99)00202-2 Search in Google Scholar

Onofiok, O., Singer, M.J., 1984. Scanning electron microscope studies of surface crusts formed by simulated rainfall. Soil Sci. Soc. Am. J., 48, 1137–1143.10.2136/sssaj1984.03615995004800050037x Search in Google Scholar

Oostindie, K., Dekker, L.W., Wesseling, J.G., Ritsema, C.J., Geissen, V., 2013. Development of actual water repellency in a grass-covered dune sand during dehydration experiment. Geoderma, 204–205, 23–30.10.1016/j.geoderma.2013.04.006 Search in Google Scholar

Or, D., Smets, B.F., Wraith, J.M., Dechesne, A., Friedman, S.P., 2007. Physical constraints affecting bacterial habitats and activity in unsaturated porous media – a review. Adv. Water Resour., 30, 1505–1527.10.1016/j.advwatres.2006.05.025 Search in Google Scholar

Otero, A., Vincenzini, M., 2003. Extracellular polysaccharide synthesis by Nostoc strains as affected by N source and light intensity. J. Biotechnol., 102, 143–152.10.1016/S0168-1656(03)00022-1 Search in Google Scholar

Pagliai, M., Bisdom, E.B.A., Ledin, S., 1983. Changes in surface structure (crusting) after application of sewage sludge and pig slurry to cultivated agricultural soils in northern Italy. Geoderma, 30, 35–53.10.1016/S0166-2481(08)70283-6 Search in Google Scholar

Pereira, S., Zille, A., Micheletti, E., Moradas-Ferreira, P., De Philippis, R., Tamagnini, P., 2009. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiol. Rev., 33, 917–941.10.1111/j.1574-6976.2009.00183.x19453747 Search in Google Scholar

Pringault, O., Garcia-Pichel, F., 2004. Hydrotaxis of cyanobacteria in desert crusts. Microb. Ecol., 47, 366–373.10.1007/s00248-002-0107-314605777 Search in Google Scholar

Redmile-Gordon, M., Gregory, A.S., White, R.P., Watts, C.W., 2020. Soil organic carbon, extracellular polymeric substances (EPS), and soil structural stability as affected by previous and current land-use. Geoderma, 363. 114143. DOI: 10.1016/j.geoderma.2019.11414310.1016/j.geoderma.2019.114143 Search in Google Scholar

Rodriguez-Caballero, E., Cantón, Y., Chamizo, S., Lázaro, R., Escudero, A., 2013. Soil loss and runoff in semiarid ecosystems: A complex interaction between biological soil crusts, micro-topography, and hydrological drivers. Ecosystems, 16, 529–546.10.1007/s10021-012-9626-z Search in Google Scholar

Rodriguez-Caballero, E., Belnap, J., Büdel, B., Crutzen, P.J., Andreae, M.O., Pöschl, U., Weber, B., 2018. Dryland photo-autotrophic soil surface communities endangered by global change. Nat. Geosci., 11, 185–189. DOI: 10.1038/s41561-018-0072-110.1038/s41561-018-0072-1 Search in Google Scholar

Rossi, F., De Philippis, R., 2015. Role of cyanobacterial exopolysccharides in phototrophic biofilms and in complex microbial mats. Life, 5, 1218–1238. DOI: 10.3390/life502121810.3390/life5021218 Search in Google Scholar

Rossi, F., De Philippis, R., 2016. Excocellular polysaccharides in microalgae and cyanobacteria: Chemical features, role and enzymes and genes involved in their biosynthesis. In: Borowitzka, M.A., Beardall, J., Raven, J.A. (Eds.): The Physiology of Microalgae. Developments in Applied Phycology, Springer, Switzerland. pp. 565–590. DOI: 10.1007/978-3-319-24945-2_2110.1007/978-3-319-24945-2_21 Search in Google Scholar

Rossi, F., Mugnai, G., De Philippis, R., 2018. Complex role of the polymeric matrix in biological soil crusts. Plant Soil, 429, 19–34. DOI: 10.1007/s11104-017-3441-410.1007/s11104-017-3441-4 Search in Google Scholar

Rossi, F., Potrafka, R.M., Garcia-Pichel, F., De Philippis, R., 2012. The role of exopolysaccharides in enhancing hydraulic conductivity of biological soil crusts. Soil Biol. Biochem., 46, 33–40.10.1016/j.soilbio.2011.10.016 Search in Google Scholar

Rutin, J., 1983. Erosional processes on a coastal sand dune, De Blink, Noordwijkerhout. Publication 35 of the Physical Geography and Soils Laboratory, University of Amsterdam, Amsterdam. Search in Google Scholar

Sun, F., Xiao, B., Li S., Kidron, G.J., 2021. Towards moss biocrust effects on surface soil water holding capacity: Soil water retention curve analysis and modeling. Geoderma, 399, 115120. DOI: 10.1016/j.geoderma.2021.11512010.1016/j.geoderma.2021.115120 Search in Google Scholar

Talbot, M.R., Williams, M.A.J., 1978. Erosion of fixed dunes in the Sahel, central Niger. Earth Surf. Process. Landf., 3, 107–113.10.1002/esp.3290030202 Search in Google Scholar

Tarchitzky, J., Banin, A., Morin, J., Chen, Y., 1984. Nature, formation and effects of soil crusts formed by water drop impact. Geoderma, 33, 135–155.10.1016/0016-7061(84)90025-9 Search in Google Scholar

Verrecchia, E., Yair, A., Kidron, G.J., Verrecchia, K., 1995. Physical properties of the psammophile cryptogamic crust and their consequences to the water regime of sandy soils, Northwestern Negev Desert, Israel. J. Arid Environ., 29, 427–437. DOI: 10.1016/S0140-1963(95)80015-810.1016/S0140-1963(95)80015-8 Search in Google Scholar

Veste, M., Littmann, T., Friedrich, H., Breckle, S.-W., 2001. Microclimatic boundary conditions for activity of soil lichen crusts in sand dunes of the north-western Negev desert, Israel. Flora, 196, 465–474.10.1016/S0367-2530(17)30088-9 Search in Google Scholar

Wilske, B., Burgheimer, J., Karnieli, A., Zaady, E., Andreae, M.O., Yakir, D., Kesselmeir, J., 2008. The CO2 exchange of biological soil crusts in a semiarid grass-shrubland at the northern transition zone of the Negev Desert, Israel. Biogeosci. Discuss., 5, 1969–2001.10.5194/bgd-5-1969-2008 Search in Google Scholar

Wood, M.K., Blackburn, W.H., 1981. Grazing systems: Their influence on infiltration rates in the rolling plains of Texas. J. Range Manage., 34, 331–335.10.2307/3897863 Search in Google Scholar

Xiao, B., Sun, F., Hu, K., Kidron, G.J., 2019a. Biocrusts reduce surface soil infiltrability and impede soil water infiltration under tension and ponding conditions in dryland ecosystem. J. Hydrol., 568, 792–802. DOI: 10.1016/j.jhydrol.2018.11.51 Search in Google Scholar

Xiao, B, Sun, F., Yao, X., Hu, K., Kidron, G.J., 2019b. Seasonal variations in infiltrability of moss-dominated biocrusts on aeolian sand and loess soil in the Chinese Loess Plateau. Hydrol. Process., 33, 2449–2463. DOI: 10.1002/hyp.1348410.1002/hyp.13484 Search in Google Scholar

Xu, C.-Y., Singh, V.P., 2001. Evaluation and generalization of temperature-based methods for calculating evaporation. Hydrol. Process., 15, 205–319. DOI: 10.1002/hyp.11910.1002/hyp.119 Search in Google Scholar

eISSN:
1338-4333
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Engineering, Introductions and Overviews, other