Accès libre

Synergistic emulsification of polyetheramine/nanofluid system as a novel viscosity reducer of acidic crude oil

À propos de cet article

Citez

Mirchi A, Hadian S, Madani K, Rouhani OM, Rouhani AM. World energy balance outlook and OPEC production capacity: implications for global oil security. Energies 2012;5(8): 2626–51. doi: 10.3390/en5082626 Mirchi A Hadian S Madani K Rouhani OM Rouhani AM . World energy balance outlook and OPEC production capacity: implications for global oil security . Energies 2012 ; 5 ( 8 ): 2626 51 . doi: 10.3390/en5082626 Open DOISearch in Google Scholar

Laherrère J, Hall CAS, Bentley R. How much oil remains for the world to produce? Comparing assessment methods, and separating fact from fiction. Curr. Res. Environ. Sustainability 2022;4: 100174. doi: 10.1016/j.crsust.2022.100174 Laherrère J Hall CAS Bentley R . How much oil remains for the world to produce? Comparing assessment methods, and separating fact from fiction . Curr. Res. Environ. Sustainability 2022 ; 4 : 100174 . doi: 10.1016/j.crsust.2022.100174 Open DOISearch in Google Scholar

Bentley RW, Mushalik M, Wang J. The resource-limited plateau in global conventional oil production: analysis and consequences. Biophys. Econ. Sustainability. 2020;5: 1–22. doi: 10.1007/s41247-020-00076-1 Bentley RW Mushalik M Wang J . The resource-limited plateau in global conventional oil production: analysis and consequences . Biophys. Econ. Sustainability . 2020 ; 5 : 1 22 . doi: 10.1007/s41247-020-00076-1 Open DOISearch in Google Scholar

Meng QY, Bentley RW. Global oil peaking: Responding to the case for ‘abundant supplies of oil’. Energy 2008; 33(8): 1179–84. doi: 10.1016/j.energy.2008.04.001 Meng QY Bentley RW . Global oil peaking: Responding to the case for ‘abundant supplies of oil’ . Energy 2008 ; 33 ( 8 ): 1179 84 . doi: 10.1016/j.energy.2008.04.001 Open DOISearch in Google Scholar

Zhou W, Xin C, Chen Y, Mouhouadi RD, Chen S. Nanoparticles for enhancing heavy oil recovery: recent progress, challenges, and future perspectives. Energy Fuels 2023;37(12): 8057–78. doi: 10.1021/acs.energyfuels.3c00684 Zhou W Xin C Chen Y Mouhouadi RD Chen S . Nanoparticles for enhancing heavy oil recovery: recent progress, challenges, and future perspectives . Energy Fuels 2023 ; 37 ( 12 ): 8057 78 . doi: 10.1021/acs.energyfuels.3c00684 Open DOISearch in Google Scholar

Alboudwarej H, Felix J, Taylor S, Badry R, Bremner C, Brough B, et al. Highlighting heavy oil. Oilfield Rev. 2006;18(2): 34–53. Alboudwarej H Felix J Taylor S Badry R Bremner C Brough B . Highlighting heavy oil . Oilfield Rev . 2006 ; 18 ( 2 ): 34 53 . Search in Google Scholar

Barros EV, Filgueiras PR, Lacerda V, Rodgers RP, Romão W. Characterization of naphthenic acids in crude oil samples – A literature review. Fuel 2022;319: 123775. doi: 10.1016/j.fuel.2022.123775 Barros EV Filgueiras PR Lacerda V Rodgers RP Romão W . Characterization of naphthenic acids in crude oil samples – A literature review . Fuel 2022 ; 319 : 123775 . doi: 10.1016/j.fuel.2022.123775 Open DOISearch in Google Scholar

Wu C, De Visscher A, Gates ID. On naphthenic acids removal from crude oil and oil sands process-affected water. Fuel 2019;253: 1229–46. doi: 10.1016/j.fuel.2019.05.091 Wu C De Visscher A Gates ID . On naphthenic acids removal from crude oil and oil sands process-affected water . Fuel 2019 ; 253 : 1229 46 . doi: 10.1016/j.fuel.2019.05.091 Open DOISearch in Google Scholar

Yang C, Zhang G, Serhan M, Koivu G, Yang Z, Hollebone B, et al. Characterization of naphthenic acids in crude oils and refined petroleum products. Fuel 2019;255: 115849. doi: 10.1016/j.fuel.2019.115849 Yang C Zhang G Serhan M Koivu G Yang Z Hollebone B . Characterization of naphthenic acids in crude oils and refined petroleum products . Fuel 2019 ; 255 : 115849 . doi: 10.1016/j.fuel.2019.115849 Open DOISearch in Google Scholar

Elsamani IAO, Mustafa MA. Reduction of naphthenic acids in high TAN crude oil using fluid catalytic cracking catalyst. Pet. Sci. Technol. 2017;36(1): 62–67 doi: 10.1080/10916466.2017.1403454 Elsamani IAO Mustafa MA . Reduction of naphthenic acids in high TAN crude oil using fluid catalytic cracking catalyst . Pet. Sci. Technol . 2017 ; 36 ( 1 ): 62 67 doi: 10.1080/10916466.2017.1403454 Open DOISearch in Google Scholar

Guo K, Li H, Yu Z. In-situ heavy and extra-heavy oil recovery: A review. Fuel 2016;185: 886–902. doi: 10.1016/j.fuel.2016.08.047 Guo K Li H Yu Z . In-situ heavy and extra-heavy oil recovery: A review . Fuel 2016 ; 185 : 886 902 . doi: 10.1016/j.fuel.2016.08.047 Open DOISearch in Google Scholar

Martínez-Palou R, Cerón-Camacho R, Chávez B, Vallejo AA, Villanueva-Negrete D, Castellanos J, et al. Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating. Fuel 2013;113: 407–14. doi: 10.1016/j.fuel.2013.05.094 Martínez-Palou R Cerón-Camacho R Chávez B Vallejo AA Villanueva-Negrete D Castellanos J . Demulsification of heavy crude oil-in-water emulsions: A comparative study between microwave and thermal heating . Fuel 2013 ; 113 : 407 14 . doi: 10.1016/j.fuel.2013.05.094 Open DOISearch in Google Scholar

Chowdhury S, Shrivastava S, Kakati A, Sangwai JS. Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process. Ind. Eng. Chem. Res. 2022;61(1): 21–64. doi: 10.1021/acs.iecr.1c03301 Chowdhury S Shrivastava S Kakati A Sangwai JS . Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process . Ind. Eng. Chem. Res . 2022 ; 61 ( 1 ): 21 64 . doi: 10.1021/acs.iecr.1c03301 Open DOISearch in Google Scholar

Al-Azani K, Abu-Khamsin S, Al-Abdrabalnabi R, Kamal MS, Patil S, Zhou X, et al. Oil recovery performance by surfactant flooding: a perspective on multiscale evaluation methods. Energy Fuels. 2022;36(22): 13451–78. doi: 10.1021/acs.energyfuels.2c02544 Al-Azani K Abu-Khamsin S Al-Abdrabalnabi R Kamal MS Patil S Zhou X . Oil recovery performance by surfactant flooding: a perspective on multiscale evaluation methods . Energy Fuels . 2022 ; 36 ( 22 ): 13451 78 . doi: 10.1021/acs.energyfuels.2c02544 Open DOISearch in Google Scholar

Kalam S, Abu-Khamsin SA, Patil S, Mahmoud M, Kamal MS, Murtaza M, et al. Adsorption reduction of a gemini surfactant on carbonate rocks using formic acid: Static and dynamic conditions. Fuel 2023;345: 128166. doi: 10.1016/j.fuel.2023.128166 Kalam S Abu-Khamsin SA Patil S Mahmoud M Kamal MS Murtaza M . Adsorption reduction of a gemini surfactant on carbonate rocks using formic acid: Static and dynamic conditions . Fuel 2023 ; 345 : 128166 . doi: 10.1016/j.fuel.2023.128166 Open DOISearch in Google Scholar

Kalam S, Abu-Khamsin SA, Kamal MS, Patil S. A review on surfactant retention on rocks: mechanisms, measurements, and influencing factors. Fuel 2021;293: 120459. doi: 10.1016/j.fuel.2021.120459 Kalam S Abu-Khamsin SA Kamal MS Patil S . A review on surfactant retention on rocks: mechanisms, measurements, and influencing factors . Fuel 2021 ; 293 : 120459 . doi: 10.1016/j.fuel.2021.120459 Open DOISearch in Google Scholar

Amirianshoja T, Junin R, Kamal Idris A, Rahmani O. A comparative study of surfactant adsorption by clay minerals. J. Pet. Sci. Eng. 2013;101: 21–7. doi: 10.1016/j.petrol.2012.10.002 Amirianshoja T Junin R Kamal Idris A Rahmani O . A comparative study of surfactant adsorption by clay minerals . J. Pet. Sci. Eng . 2013 ; 101 : 21 7 . doi: 10.1016/j.petrol.2012.10.002 Open DOISearch in Google Scholar

Asl FO, Zargar G, Manshad AK, Iglauer S, Keshavarz A. Experimental investigation and simulation for hybrid of nanocomposite and surfactant as EOR process in carbonate oil reservoirs. Fuel 2022;319: 123591. doi: 10.1016/j.fuel.2022.123591 Asl FO Zargar G Manshad AK Iglauer S Keshavarz A . Experimental investigation and simulation for hybrid of nanocomposite and surfactant as EOR process in carbonate oil reservoirs . Fuel 2022 ; 319 : 123591 . doi: 10.1016/j.fuel.2022.123591 Open DOISearch in Google Scholar

Yang Y, Guo J, Cheng Z, Wu W, Zhang J, Zhang J, et al. New composite viscosity reducer with both asphaltene dispersion and emulsifying capability for heavy and ultraheavy crude oils. Energy Fuels 2017;31(2): 1159–73. doi: 10.1021/acs.energyfuels.6b02265 Yang Y Guo J Cheng Z Wu W Zhang J Zhang J . New composite viscosity reducer with both asphaltene dispersion and emulsifying capability for heavy and ultraheavy crude oils . Energy Fuels 2017 ; 31 ( 2 ): 1159 73 . doi: 10.1021/acs.energyfuels.6b02265 Open DOISearch in Google Scholar

Douglas LD, Rivera-Gonzalez N, Cool N, Bajpayee A, Udayakantha M, Liu G-W, et al. A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil. ACS Omega. 2022;7(2): 1547–74. doi: 10.1021/acsomega.1c06399 Douglas LD Rivera-Gonzalez N Cool N Bajpayee A Udayakantha M Liu G-W . A Materials Science Perspective of Midstream Challenges in the Utilization of Heavy Crude Oil . ACS Omega . 2022 ; 7 ( 2 ): 1547 74 . doi: 10.1021/acsomega.1c06399 Open DOISearch in Google Scholar

Neubauer E, Hincapie RE, Borovina A, Biernat M, Clemens T, Ahmad YK, editors. Influence of nanofluids on wettability changes and interfacial tension reduction. Society of Petroleum Engineers – SPE Europec Featured at 82nd EAGE Conference and Exhibition; 2020. Neubauer E Hincapie RE Borovina A Biernat M Clemens T Ahmad YK , editors. Influence of nanofluids on wettability changes and interfacial tension reduction . Society of Petroleum Engineers – SPE Europec Featured at 82nd EAGE Conference and Exhibition ; 2020 . Search in Google Scholar

Yakasai F, Jaafar MZ, Bandyopadhyay S, Agi A. Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms. J. Ind. Eng. Chem. 2021;93: 138–62. doi: 10.1016/j.jiec.2020.10.017 Yakasai F Jaafar MZ Bandyopadhyay S Agi A . Current developments and future outlook in nanofluid flooding: A comprehensive review of various parameters influencing oil recovery mechanisms . J. Ind. Eng. Chem . 2021 ; 93 : 138 62 . doi: 10.1016/j.jiec.2020.10.017 Open DOISearch in Google Scholar

Saleh S, Neubauer E, Borovina A, Hincapie RE, Clemens T, Ness D. Wettability changes due to nanomaterials and alkali—A proposed formulation for EOR. Nanomaterials. 2021;11(9): 2351. doi: 10.3390/nano11092351 Saleh S Neubauer E Borovina A Hincapie RE Clemens T Ness D . Wettability changes due to nanomaterials and alkali—A proposed formulation for EOR . Nanomaterials . 2021 ; 11 ( 9 ): 2351 . doi: 10.3390/nano11092351 Open DOISearch in Google Scholar

Hendraningrat L, Torsæter O. Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems. Appl. Nanosci. 2015;5(2): 181–99. doi: 10.1007/s13204-014-0305-6 Hendraningrat L Torsæter O . Metal oxide-based nanoparticles: revealing their potential to enhance oil recovery in different wettability systems . Appl. Nanosci . 2015 ; 5 ( 2 ): 181 99 . doi: 10.1007/s13204-014-0305-6 Open DOISearch in Google Scholar

Al-Asadi A, Rodil E, Soto A. Nanoparticles in chemical EOR: a review on flooding tests. Nanomaterials 2022;12(23): 4142. doi: 10.3390/nano12234142 Al-Asadi A Rodil E Soto A . Nanoparticles in chemical EOR: a review on flooding tests . Nanomaterials 2022 ; 12 ( 23 ): 4142 . doi: 10.3390/nano12234142 Open DOISearch in Google Scholar

Zargartalebi M, Kharrat R, Barati N. Enhancement of surfactant flooding performance by the use of silica nanoparticles. Fuel 2015;143: 21–7. doi: 10.1016/j.fuel.2014.11.040 Zargartalebi M Kharrat R Barati N . Enhancement of surfactant flooding performance by the use of silica nanoparticles . Fuel 2015 ; 143 : 21 7 . doi: 10.1016/j.fuel.2014.11.040 Open DOISearch in Google Scholar

Liu P, Yu H, Niu L, Ni D, Zhao Q, Li X, et al. Utilization of Janus-silica/surfactant nanofluid without ultra-low interfacial tension for improving oil recovery. Chem. Eng. Sci. 2020;228: 115964. doi: 10.1016/j.ces.2020.115964 Liu P Yu H Niu L Ni D Zhao Q Li X . Utilization of Janus-silica/surfactant nanofluid without ultra-low interfacial tension for improving oil recovery . Chem. Eng. Sci . 2020 ; 228 : 115964 . doi: 10.1016/j.ces.2020.115964 Open DOISearch in Google Scholar

Cheraghian G. Application of nano-fumed silica in heavy oil recovery. Pet. Sci. Technol. 2016;34(1): 12–8. doi: 10.1080/10916466.2015.1114497 Cheraghian G . Application of nano-fumed silica in heavy oil recovery . Pet. Sci. Technol . 2016 ; 34 ( 1 ): 12 8 . doi: 10.1080/10916466.2015.1114497 Open DOISearch in Google Scholar

Hurtado Y, Beltrán C, Zabala RD, Lopera SH, Franco CA, Nassar NN, et al. Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs. Energy Fuels 2018;32(5): 5824–33. doi: 10.1021/acs.energyfuels.8b00665 Hurtado Y Beltrán C Zabala RD Lopera SH Franco CA Nassar NN . Effects of surface acidity and polarity of SiO2 nanoparticles on the foam stabilization applied to natural gas flooding in tight gas-condensate reservoirs . Energy Fuels 2018 ; 32 ( 5 ): 5824 33 . doi: 10.1021/acs.energyfuels.8b00665 Open DOISearch in Google Scholar

He L, Lin F, Li X, Sui H, Xu Z. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chem. Soc. Rev. 2015;44(15): 5446–94. doi: 10.1039/c5cs00102a He L Lin F Li X Sui H Xu Z . Interfacial sciences in unconventional petroleum production: from fundamentals to applications . Chem. Soc. Rev . 2015 ; 44 ( 15 ): 5446 94 . doi: 10.1039/c5cs00102a Open DOISearch in Google Scholar

Isaac OT, Pu H, Oni BA, Samson FA. Surfactants employed in conventional and unconventional reservoirs for enhanced oil recovery—A review. Energy Rep. 2022;8: 2806–30. doi: 10.1016/j.egyr.2022.01.187 Isaac OT Pu H Oni BA Samson FA . Surfactants employed in conventional and unconventional reservoirs for enhanced oil recovery—A review . Energy Rep . 2022 ; 8 : 2806 30 . doi: 10.1016/j.egyr.2022.01.187 Open DOISearch in Google Scholar

Chen S, Han M, AlSofi AM, Fahmi MM. Experimental evaluation of non-ionic mixed surfactant formulations at high-temperature and high-salinity conditions. J. Pet. Sci. Eng. 2022;219: 111084. doi: 10.1016/j.petrol.2022.111084 Chen S Han M AlSofi AM Fahmi MM . Experimental evaluation of non-ionic mixed surfactant formulations at high-temperature and high-salinity conditions . J. Pet. Sci. Eng . 2022 ; 219 : 111084 . doi: 10.1016/j.petrol.2022.111084 Open DOISearch in Google Scholar

Wei P, Guo K, Xie Y. Polysaccharide-stabilized oilladen foam for enhancing oil recovery. J. Pet. Sci. Eng. 2020;195: 107597. doi: 10.1016/j.petrol.2020.107597 Wei P Guo K Xie Y . Polysaccharide-stabilized oilladen foam for enhancing oil recovery . J. Pet. Sci. Eng . 2020 ; 195 : 107597 . doi: 10.1016/j.petrol.2020.107597 Open DOISearch in Google Scholar

Wen Y, Lai N, Li W, Zhang Y, Du Z, Han L, et al. Factors influencing the stability of natural gas foam prepared by alkyl polyglycosides and its decay rules. J. Pet. Sci. Eng. 2021;196: 108039. doi: 10.1016/j.petrol.2020.108039 Wen Y Lai N Li W Zhang Y Du Z Han L . Factors influencing the stability of natural gas foam prepared by alkyl polyglycosides and its decay rules . J. Pet. Sci. Eng . 2021 ; 196 : 108039 . doi: 10.1016/j.petrol.2020.108039 Open DOISearch in Google Scholar

Wu Q, Zheng H, Chen Y, Liu M, Bao X, Guo W. Alkylethoxyglucoside-enhanced volatile fatty acids production from waste activated sludge: Performance and mechanisms. J. Cleaner Prod. 2021;289: 125765. doi: 10.1016/j.jclepro.2020.125765 Wu Q Zheng H Chen Y Liu M Bao X Guo W . Alkylethoxyglucoside-enhanced volatile fatty acids production from waste activated sludge: Performance and mechanisms . J. Cleaner Prod . 2021 ; 289 : 125765 . doi: 10.1016/j.jclepro.2020.125765 Open DOISearch in Google Scholar

Wang Z, Hu R, Ren G, Li G, Liu S, Xu Z, et al. Polyetheramine as an alternative alkali for alkali/surfactant/polymer flooding. Colloids Surf. A 2019;581: 123820. doi: 10.1016/j.colsurfa.2019.123820 Wang Z Hu R Ren G Li G Liu S Xu Z . Polyetheramine as an alternative alkali for alkali/surfactant/polymer flooding . Colloids Surf. A 2019 ; 581 : 123820 . doi: 10.1016/j.colsurfa.2019.123820 Open DOISearch in Google Scholar

Umar AA, Saaid IBM, Sulaimon AA, Pilus RBM. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids. J. Pet. Sci. Eng. 2018;165: 673–90. doi: 10.1016/j.petrol.2018.03.014 Umar AA Saaid IBM Sulaimon AA Pilus RBM . A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids . J. Pet. Sci. Eng . 2018 ; 165 : 673 90 . doi: 10.1016/j.petrol.2018.03.014 Open DOISearch in Google Scholar

Olajire AA. Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges. Energy 2014;77: 963–82. doi: 10.1016/j.energy.2014.09.005 Olajire AA . Review of ASP EOR (alkaline surfactant polymer enhanced oil recovery) technology in the petroleum industry: Prospects and challenges . Energy 2014 ; 77 : 963 82 . doi: 10.1016/j.energy.2014.09.005 Open DOISearch in Google Scholar

Hirasaki GJ, Miller CA, Puerto M. Recent advances in surfactant EOR. SPE J. 2011;16(4): 889–907. Hirasaki GJ Miller CA Puerto M . Recent advances in surfactant EOR . SPE J . 2011 ; 16 ( 4 ): 889 907 . Search in Google Scholar

Pei H, Zhang G, Ge J, Jin L, Ding L. Study on the variation of dynamic interfacial tension in the process of alkaline flooding for heavy oil. Fuel 2013;104: 372–8. doi: 10.1016/j.fuel.2012.10.022 Pei H Zhang G Ge J Jin L Ding L . Study on the variation of dynamic interfacial tension in the process of alkaline flooding for heavy oil . Fuel 2013 ; 104 : 372 8 . doi: 10.1016/j.fuel.2012.10.022 Open DOISearch in Google Scholar

Chakraborty S, Panigrahi PK. Stability of nanofluid: A review. Appl. Therm. Eng. 2020;174: 115259. doi: 10.1016/j.applthermaleng.2020.115259 Chakraborty S Panigrahi PK . Stability of nanofluid: A review . Appl. Therm. Eng . 2020 ; 174 : 115259 . doi: 10.1016/j.applthermaleng.2020.115259 Open DOISearch in Google Scholar

Yuan F-Q, Cheng Y-Q, Wang H-Y, Xu Z-C, Zhang L, Zhang L, et al. Effect of organic alkali on interfacial tensions of surfactant solutions against crude oils. Colloids Surf. A 2015;470: 171–8. doi: 10.1016/j.colsurfa.2015.01.059 Yuan F-Q Cheng Y-Q Wang H-Y Xu Z-C Zhang L Zhang L . Effect of organic alkali on interfacial tensions of surfactant solutions against crude oils . Colloids Surf. A 2015 ; 470 : 171 8 . doi: 10.1016/j.colsurfa.2015.01.059 Open DOISearch in Google Scholar

Gbadamosi AO, Junin R, Manan MA, Agi A, Yusuff AS. An overview of chemical enhanced oil recovery: recent advances and prospects. Int. Nano Lett. 2019;9: 171–202. doi: 10.1007/s40089-019-0272-8 Gbadamosi AO Junin R Manan MA Agi A Yusuff AS . An overview of chemical enhanced oil recovery: recent advances and prospects . Int. Nano Lett . 2019 ; 9 : 171 202 . doi: 10.1007/s40089-019-0272-8 Open DOISearch in Google Scholar

Low JY, Khe CS, Usman F, Hassan YM, Lai CW, You KY, et al. Review on demulsification techniques for oil/water emulsion: Comparison of recyclable and irretrievable approaches. Environmental Research. 2024;243: 117840. doi: 10.1016/j.envres.2023.117840 Low JY Khe CS Usman F Hassan YM Lai CW You KY . Review on demulsification techniques for oil/water emulsion: Comparison of recyclable and irretrievable approaches . Environmental Research . 2024 ; 243 : 117840 . doi: 10.1016/j.envres.2023.117840 Open DOISearch in Google Scholar

Fu L, Zhang G, Ge J, Liao K, Pei H, Jiang P, et al. Study on organic alkali-surfactant-polymer flooding for enhanced ordinary heavy oil recovery. Colloids Surf. A 2016;508: 230–9. doi: 10.1016/j.colsurfa.2016.08.042 Fu L Zhang G Ge J Liao K Pei H Jiang P . Study on organic alkali-surfactant-polymer flooding for enhanced ordinary heavy oil recovery . Colloids Surf. A 2016 ; 508 : 230 9 . doi: 10.1016/j.colsurfa.2016.08.042 Open DOISearch in Google Scholar

Wang Y, Liu H, Wang J, Dong X, Chen F. Formulation development and visualized investigation of temperature-resistant and salt-tolerant surfactant-polymer flooding to enhance oil recovery. J. Pet. Sci. Eng. 2019;174:584–98. doi: 10.1016/j.petrol.2018.11.074 Wang Y Liu H Wang J Dong X Chen F . Formulation development and visualized investigation of temperature-resistant and salt-tolerant surfactant-polymer flooding to enhance oil recovery . J. Pet. Sci. Eng . 2019 ; 174 : 584 98 . doi: 10.1016/j.petrol.2018.11.074 Open DOISearch in Google Scholar

Feng H, Hou J, Ma T, Meng Z, Wu H, Yang H, et al. The ultra-low interfacial tension behavior of the combined cationic/anionic-nonionic gemini surfactants system for chemical flooding. Colloids Surf. A 2018;554: 74–80. doi: 10.1016/j.colsurfa.2018.06.028 Feng H Hou J Ma T Meng Z Wu H Yang H . The ultra-low interfacial tension behavior of the combined cationic/anionic-nonionic gemini surfactants system for chemical flooding . Colloids Surf. A 2018 ; 554 : 74 80 . doi: 10.1016/j.colsurfa.2018.06.028 Open DOISearch in Google Scholar

Sakthivel S, Abdel-Azeim S, Nair VC. Effect of nanomaterials functionality on the acidic crude oil: Wettability and oil recovery studies. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023;679: 132582. doi: 10.1016/j.colsurfa.2023.132582 Sakthivel S Abdel-Azeim S Nair VC . Effect of nanomaterials functionality on the acidic crude oil: Wettability and oil recovery studies . Colloids and Surfaces A: Physicochemical and Engineering Aspects . 2023 ; 679 : 132582 . doi: 10.1016/j.colsurfa.2023.132582 Open DOISearch in Google Scholar

eISSN:
2083-134X
Langue:
Anglais