INFORMAZIONI SU QUESTO ARTICOLO

Cita

Cai Z., Guldbrandtsen B., Lund M.S., Sahana G. (2018). Prioritizing candidate genes post-GWAS using multiple sources of data for mastitis resistance in dairy cattle. BMC Genomics, 19: 656.10.1186/s12864-018-5050-xSearch in Google Scholar

Chen Z., Xu X., Tan T., Chen D., Liang H. (2019). MicroRNA-145 regulates immune cytokines via targeting FSCN1 in Staphylococcus aureus-induced mastitis in dairy cows. Reprod. Domest. Anim., 54: 882–891.10.1111/rda.13438Search in Google Scholar

Fang L., Hou Y., An J., Li B., Song M. (2016). Genome-wide transcriptional and post-transcriptional regulation of innate immune and defense responses of bovine mammary gland to Staphylococcus aureus. Front. Cell. Infect. Microbiol., 6: 193.10.3389/fcimb.2016.00193Search in Google Scholar

FresnoVara J.A., Casado E., de Castro J., Cejas P., Belda-Iniesta C., González-Barón M. (2004). P13K/Akt signalling pathway and cancer. Cancer Treatment Rev., 30: 193–204.10.1016/j.ctrv.2003.07.007Search in Google Scholar

Gomes F., Henriques M. (2016). Control of bovine mastitis: old and recent therapeutic approaches. Curr. Microbiol., 72: 377–382.10.1007/s00284-015-0958-8Search in Google Scholar

Griesbeck-Zilch B., Osman M., Kühn C., Schwerin M., Bruckmaier R.H., Pfaffl M.W., Hammerle-Fickinger A., Meyer H.H., Wellnitz O. (2009). Analysis of key molecules of the innate immune system in mammary epithelial cells isolated from marker-assisted and conventionally selected cattle. J. Dairy Sci., 92: 4621–4633.10.3168/jds.2008-1954Search in Google Scholar

Han H. (2019). Identification of several key genes by microarray data analysis of bovine mammary gland epithelial cells challenged with Escherichia coli and Staphylococcus aureus. Gene, 683: 123–132.10.1016/j.gene.2018.10.004Search in Google Scholar

He Y., Song M., Zhang Y., Li X., Song Z. (2016). Whole-genome regulation analysis of histone H3 lysin 27 trimethylation in subclinical mastitis cows infected by Staphylococcus aureus. BMC Genomics, 17: 565.10.1186/s12864-016-2947-0Search in Google Scholar

Huang D.W., Sherman B.T., Lempicki R.A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocol, 4: 44–57.10.1038/nprot.2008.211Search in Google Scholar

Jensen K., Günther J., Talbot R., Petzl W., Zerbe H. (2013). Escherichia coli- and Staphylococcus aureus-induced mastitis differentially modulate transcriptional responses in neighbouring uninfected bovine mammary gland quarters. BMC Genomics, 14: 36.10.1186/1471-2164-14-36Search in Google Scholar

Karthikeyan A., Radhika G., Aravindhakshan T.V., Anilkumar K. (2016). Expression profiling of innate immune genes in milk somatic cells during subclinical mastitis in crossbred dairy cows. Anim. Biotechnol., 27: 303–309.10.1080/10495398.2016.1184676Search in Google Scholar

Khan M.Z., Khan A., Xiao J., Ma J., Ma Y., Chen T., Shao D., Cao Z. (2020). Overview of research development on the role of NF-κB signaling in mastitis. Animals, 10: 1625.10.3390/ani10091625Search in Google Scholar

Lee D., Redfern O., Orengo C. (2007). Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol., 8: 995–1005.10.1038/nrm2281Search in Google Scholar

Lu X., Yarbrough W.G. (2015). Negative regulation of RelA phosphorylation: Emerging players and their roles in cancer. Cytokine Growth Factor Rev., 26: 7–13.10.1016/j.cytogfr.2014.09.003Search in Google Scholar

Lutzow Y.C.S., Donaldson L., Gray C.P., Vuocolo T., Pearson R.D. (2008). Identification of immune genes and proteins involved in the response of bovine mammary tissue to Staphylococcus aureus infection. BMC Vet. Res., 4: 18.10.1186/1746-6148-4-18Search in Google Scholar

Ogorevc J., Kunej T., Razpet A., Dovc P. (2009). Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet., 40: 832–851.10.1111/j.1365-2052.2009.01921.xSearch in Google Scholar

Scheffler M., Bos M., Gardizi M., König K., Michels S. (2015). PIK-3CA mutations in non-small cell lung cancer (NSCLC): Genetic heterogeneity, prognostic impact and incidence of prior malignancies. Oncotarget, 6: 1315–1326.10.18632/oncotarget.2834Search in Google Scholar

Sharifi S., Pakdel A., Ebrahimi M., Reecy J.M., Fazeli Farsani S., Ebrahimie E. (2018). Integration of machine learning and meta-analysis identifies the transcriptomic bio-signature of mastitis disease in cattle. PLoS One, 13: e0191227.10.1371/journal.pone.0191227Search in Google Scholar

Sharifi S., Pakdel A., Ebrahimie E., Aryan Y., Zefrehee M.G., Reecy J.M. (2019). Prediction of key regulators and downstream targets of E. coli induced mastitis. J. Appl. Genet., 60: 367–373.10.1007/s13353-019-00499-7Search in Google Scholar

Song M., He Y., Zhou H., Zhang Y., Li X. (2016). Combined analysis of DNA methylome and transcriptome reveal novel candidate genes with susceptibility to bovine Staphylococcus aureus subclinical mastitis. Sci. Rep., 6: 1–15.10.1038/srep29390Search in Google Scholar

Sousa S.A., Leitão J.H., Martins R.C., Sanches J.M., Suri J.S. (2016). Bioinformatics applications in life sciences and technologies. Biomed Res. Int., 1–2.10.1155/2016/3603827487033527274986Search in Google Scholar

Spaan A.N., Surewaard J., Nijland R., van Strijp G. (2013). Neutrophils versus Staphylococcus aureus: A biological tug of war. Annu. Rev. Microbiol., 67: 629–650.10.1146/annurev-micro-092412-155746Search in Google Scholar

Szklarczyk D., Franceschini A., Wyder S., Forslund K., Heller D. (2015). Protein-protein interaction networks, integrated over the tree of life. Nucl. Acid. Res., 43: D447–D452.10.1093/nar/gku1003Search in Google Scholar

Tao W., Mallard B. (2007). Differentially expressed genes associated with Staphylococcus aureus mastitis of Canadian Holstein cows. Vet. Immunol. Immunopathol., 120: 201–211.10.1016/j.vetimm.2007.06.019Search in Google Scholar

Thompson-Crispi K., Atalla H., Miglior F., Mallard B.A. (2014). Bovine mastitis: frontiers in immunogenetics. Front. Immunol., 5: 493.10.3389/fimmu.2014.00493Search in Google Scholar

Tolone M., Larrondo C., Yáñez M., Newman S., Sardina T., Portolano B. (2016). Assessment of genetic variation for pathogen-specific mastitis resistance in Valle del Belice dairy sheep. BMC Vet. Res., 12: 158.10.1186/s12917-016-0781-xSearch in Google Scholar

Wang X.G., Huang J.M., Feng M.Y., Ju Z.H., Wang C.F. (2014). Regulatory mutations in the A2M gene are involved in the mastitis susceptibility in dairy cows. Anim. Genet., 4: 28–37.10.1111/age.12099Search in Google Scholar

Wang X., Ma P., Liu J., Zhang Q., Zhang Y. (2015). Genome-wide association study in Chinese Holstein cows reveal two candidate genes for somatic cell score as an indicator for mastitis susceptibility. BMC Genet., 16: 111.10.1186/s12863-015-0263-3Search in Google Scholar

Welderufael B.G., Løvendahl P., de Koning D.J., Janss L.L.G., Fikse W.F. (2018). Genome-wide association study for susceptibility to and recoverability from mastitis in Danish Holstein cows. Front. Genet., 9: 141.10.3389/fgene.2018.00141Search in Google Scholar

Wiggans G.R., Cole J.B., Hubbard S.M., Sonstegard T.S. (2017). Genomic selection in dairy cattle: The USDA experience. Annu. Rev. Anim. Biosci., 5: 309–327.10.1146/annurev-animal-021815-111422Search in Google Scholar

Wu J., Li L., Sun Y., Huang S., Tang J. (2015). Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis. PLoS One, 10: e0118458.10.1371/journal.pone.0118458Search in Google Scholar

Younis S., Javed Q., Blumenberg M. (2016). Meta-analysis of transcriptional responses to mastitis-causing Escherichia coli. PLoS One, 11: e0148562.10.1371/journal.pone.0148562Search in Google Scholar

Yuan Z., Li J., Zhang L., Gao X.H.J., Gao H.J. (2012). Investigation on BRCA1 SNPs and its effects on mastitis in Chinese commercial cattle. Gene, 505: 190–194.10.1016/j.gene.2012.05.010Search in Google Scholar

Yuan Z., Li J., Gao X., Xu S. (2013). SNPs identification and its correlation analysis with milk somatic cell score in bovine MBL1 gene. Mol. Biol. Rep., 40: 7–12.10.1007/s11033-012-1934-zSearch in Google Scholar

eISSN:
2300-8733
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine