Accesso libero

The role of PET-CT in radiotherapy planning of solid tumours

INFORMAZIONI SU QUESTO ARTICOLO

Cita

1. MacManus M, Nestle U, Rosenzweig KE, Carrio I, Messa C, Belohlavek O, et al. Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006-2007. Radiother Oncol 2009; 91: 85-94.10.1016/j.radonc.2008.11.008Search in Google Scholar

2. T he modern technology of radiation oncology, Volumes 1 & 2. Van Dyk J, editor. Madison: Medical Physics Publishing Corporation; 2005.Search in Google Scholar

3. Thorwarth D, Geets X, Paiusco M. Physical radiotherapy treatment planning based on functional PET/CT data. Radiother Oncol 2010; 96: 317-24.10.1016/j.radonc.2010.07.012Search in Google Scholar

4. Vernon MR, Maheshwari M, Schultz CJ, Michel MA, Wong SJ, Campbell BH, et al. Clinical outcomes of patients receiving integrated PET/CT-guided radiotherapy for head and neck carcinoma. Int J Radiat Oncol Biol Phys 2008; 70: 678-84.10.1016/j.ijrobp.2007.10.044Search in Google Scholar

5. Petric P, Hudej R, Rogelj P, Blas M, Segedin B, Logar HBZ, et al. Comparison of 3D MRI with high sampling efficiency and 2D multiplanar MRI for contouring in cervix cancer brachytherapy. Radiol Oncol 2012; 46: 242-51.10.2478/v10019-012-0023-1Search in Google Scholar

6. Ling CC, Humm J, Larson S, Amols H, Fuks Z, Leibel S, et al. Towards multidimensional radiotherapy (MD-CRT): biological imaging and biological conformality. Int J Radiat Oncol Biol Phys 2000; 47: 551-60.10.1016/S0360-3016(00)00467-3Search in Google Scholar

7. PET Professional resources and outreach source: 18F-fluorodeoxyglucose (FDG) PET and PET/CT practice guidelines in oncology. A summary of the recommendations and practice guidelines of professional groups. Available April 2013: http://www.snm.org/docs/PET_PROS/ OncologyPracticeGuidelineSummary.pdfSearch in Google Scholar

8. Fletcher JW, Djulbegovic B, Soares HP, Siegel BA, Lowe VJ, Lyman GH, et al. Recommendations on the use of 18F-FDG PET in oncology. J Nucl Med 2008; 49: 480-507.10.2967/jnumed.107.047787Search in Google Scholar

9. Ben-Haim S, Ell P. 18F-FDG PET and PET/CT in the evaluation of cancer treatment response. J Nucl Med 2009; 50: 88-99.10.2967/jnumed.108.054205Search in Google Scholar

10. Quartuccio N, Treglia G, Salsano M, Mattoli MV, Muoio B, Piccardo A, et al. The role of Fluorine-18-Fluorodeoxyglucose positron emission tomography in staging and restaging of patients with osteosarcoma. Radiol Oncol 2013; 47: 97-102.10.2478/raon-2013-0017Search in Google Scholar

11. Kim JS, Jeong YJ, Sohn MH, Jeong HJ, Lim ST, Kim DW, et al. Usefulness of F-18 FDG PET/CT in subcutaneous panniculitis-like T cell lymphoma: disease extent and treatment response evaluation. Radiol Oncol 2012; 46: 279-83.10.2478/v10019-012-0017-zSearch in Google Scholar

12. Gregoire V, Haustermans K, Geets X, Roels S, Lonneux M. PET-Based treatment planning in Radiotherapy: A new standard? J Nucl Med 2007; 48: 68-77.Search in Google Scholar

13. C iernik IF, Dizendorf E, Baumert BG, Reiner B, Burger C, Davis JB, et al. Radiation treatment planning with an integrated positron emission and computer tomography (PET/CT): A feasibility study. Int J Radiat Oncol Biol Phys 2003; 57: 853-63.10.1016/S0360-3016(03)00346-8Search in Google Scholar

14. Haubner R. PET radiopharmaceuticals in radiation treatment planning - synthesis and biological characteristics. Radiat Oncol 2010; 96: 280-7.10.1016/j.radonc.2010.07.022Search in Google Scholar

15. Halldin C. How to image (tracers). State of the art and future development. [Abstract]. Radiat Oncol 2010; 94(Suppl 1): S5-6.10.1016/S0167-8140(15)34425-XSearch in Google Scholar

16. Nestle U. Clinical requirements for target volume selection/ delineation. [Abstract]. Radiother Oncol 2010; 94(Suppl 1): S9.10.1016/S0167-8140(15)34439-XSearch in Google Scholar

17. Bentzen SM, Gregoire V. M olecular imaging-based dose painting: a novel paradigm for radiation therapy prescription. Semin Radiat Oncol 2011; 21: 101-10.10.1016/j.semradonc.2010.10.001Search in Google Scholar

18. Ma dani I, Duthoy W, Derie C, De Gersem W, Boterberg T, Jacobs F, et al. Positron emission tomography-guided, focal-dose escalation using intensitymodulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 68: 126-35.10.1016/j.ijrobp.2006.12.070Search in Google Scholar

19. P inkawa M, Piroth M, Holy R, Klotz J, Nussen S, KrohnT, et al. Intensitymodulated radiotherapy for prostate cancer implementing molecular imaging with 18F-choline PET-CT to define a simultaneous integrated boost. [Abstract]. Radiother Oncol 2010; 94(Suppl 1): S11.10.1016/S0167-8140(15)34446-7Search in Google Scholar

20. B ethesda MD. International Comission on Radiation Units 1993. ICRU Report 50. Prescribing, recording and reporting photon beam therapy.Search in Google Scholar

21. Aerts HJWL, Van Baardwijk AAW, Petit SF, Offermann C, Van Loon J, Houben R, et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18Fluorodeoxyglucose-PET-CT scan. Radiother Oncol 2009; 91: 386-92.10.1016/j.radonc.2009.03.006Search in Google Scholar

22. S attler B, Lee JA, Lonsdale M, Coche E. PET/CT (and CT) instrumentation, image reconstruction and data transfer for radiotherapy planning. Radiother Oncol 2010; 96: 288-97.10.1016/j.radonc.2010.07.009Search in Google Scholar

23. Mah K, Caldwell CB, Ung YC, Danjoux CE, Balogh JM, Ganguli SN, et al. The impact of 18FDG-PET on target and critical organs in CT-based treatment planning of patients with poorly defined non-small-cell lung carcinoma: a prospective study. Int J Radiat Oncol Bio Phys 2002; 52: 339-50.10.1016/S0360-3016(01)01824-7Search in Google Scholar

24. Bradley J, Thorstad WL, Mutic S. Impact of FDG-PET on radiation therapy volume delineation in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2003; 57: 853-63.Search in Google Scholar

25. Erdi YE, Rosenzweig K, Erdi AK, Macapinlac HA, Hu YC, Braban LE, et al. Radiotherapy treatment planning for patients with non-small cell lung cancer using positron emission tomography (PET). Radiother Oncol 2002; 62: 51-60.10.1016/S0167-8140(01)00470-4Search in Google Scholar

26. N estle U, Kremp S, Schaefer-Schuler A, Sebastian-Welsch C, Hellwig D, Rube C, et al. Comparison of different methods for delineation of 18FFDG PETpositive tissue for target volume definition in radiotherapy of patients with non-small cell lung cancer. J Nucl Med 2005; 46: 1342-8.Search in Google Scholar

27. Yu J, Li X, Xing L, Mu D, Fu Z, Sun X, et al. Comparison of tumor volumes as determined by pathologic examination and FDG-PET/CT images of nonsmall- cell lung cancer: a pilot study. Int J Radiat Oncol Biol Phys 2009; 75: 1468-74.10.1016/j.ijrobp.2009.01.01919464822Search in Google Scholar

28. D evic S, Tomic N, Faria S, Menard S, Lisbona R, Lehnert S. Defining radiotherapy target volumes using 18F-fluoro-deoxy-glucose positron emission tomography/computed tomography: Still a Pandora’s box? Int J Radiat Oncol Biol Phys 2010; 78: 1555-62.Search in Google Scholar

29. Deniaud-Alexandre E, Touboul E, Lerouge D, Grahek D, Foulquier JN, Petegnief Y, et al. Impact of computed tomography and 18F-deoxyglucose coincidence detection emission tomography image fusion for optimization of conformal radiotherapy in non-small cell lung cancer. Int J Radiat Oncol Biol Phys 2005; 63: 1432-41.10.1016/j.ijrobp.2005.05.01616125870Search in Google Scholar

30. G regory DL, Hicks RJ, Hogg A, Binns DS, Shum PL, Milner A, et al. Effect of PET/CT on management of patients with non-small cell lung cancer: results of prospective study with 5-year prospective data. J Nucl Med 2012; 53: 1007-15.10.2967/jnumed.111.09971322677701Search in Google Scholar

31. Cuaron J, Dunphy M, Rimner A. Role of FDG-PET scans in staging, response assessment and follow-up care for non-small cell lung cancer. Front Oncol 2013; 2: 1-7.10.3389/fonc.2012.00208353965423316478Search in Google Scholar

32. Hellwig D, Baum RP, Kirsch CM. FDG-PET, PET/CT and conventional nuclear medicine procedures in the evaluation of lung cancer: A systematic review. Nuklearmedizin 2009; 48: 59-69.10.3413/nukmed-0217Search in Google Scholar

33. De Wever W, Stroobants S, Coolen J, Verschakelen JA. Integrated PET/CT in the staging of non-small cell lung cancer: technical aspects and clinical integration. Eur Respir J 2009; 33: 201-12.10.1183/09031936.0003510819118231Search in Google Scholar

34. Rebollo-Aguirre AC, Ramos-Font C, Villegas Portero R, Cook GJ, Llamas Elvira JM Romero Tabares A. Is FDG-PET suitable for evaluationg neoadjuvant therapy in non-small cell lung cancer? Evidence with systematic review of the literature. J Surg Oncol 2010; 101: 486-94.10.1002/jso.2152520213693Search in Google Scholar

35. Cistaro A, Quartuccio N, Mojtahedi A, Fania P, Filosso PL, Ficola U, et al. Prediction of 2 years-survival in patients with stage I and II non-small cell lung cancer utilizing 18F-FDG PET/CT SUV quantification. Radiol Oncol 2013; 47: 219-23.10.2478/raon-2013-0023379487624133385Search in Google Scholar

36. Berghmans T, Dusart M, Paesmans M, Hossein-Foucher C, Buvat I, Cataigne C, et al. Primary tumor standardised uptake value /SUVmax) measured on fluorodeoxyglucose positron emission tomography (FDG-PET) is of prognostic value for survival in non-small cell lung cancer (NSCLC): a systematic review and meta-analysis (MA) by the European Lung Cancer Working Party for the IASLC Lung Cancer Staging Project. J Thorac Oncol 2008; 3: 6-12.10.1097/JTO.0b013e31815e6d6b18166834Search in Google Scholar

37. Mac Manus MP, Hicks RJ, Matthew JP, Wirth A, Rischin D, Ball DL. Metabolic (FDG-PET) response after radical radiotherapy/chemoradiotherapy for non-small cell lung cancer correlates with patterns of failure. Lung Cancer 2005; 49: 95-108.10.1016/j.lungcan.2004.11.02415949595Search in Google Scholar

38. Usmanij EA, Geus-Oei LF, Troost EG, Peters-Bax L, van der Heijden EH, Kaanders JH, et al. 18F-FDG PET early response evaluation of locally advanced non-small cell lung cancer treated with concomitant chemoradiotherapy. J Nucl Med 2013; 54: 1528-34.10.2967/jnumed.112.11692123864719Search in Google Scholar

39. Aerts HJWL, Van Baardwijk AAW , Petit SF, Offermann C, Van Loon J, Houben R, et al. Identification of residual metabolic-active areas within individual NSCLC tumours using a pre-radiotherapy 18Fluorodeoxyglucose-PET-CT scan. Radiother Oncol 2009; 91: 386-92.10.1016/j.radonc.2009.03.006469360919329207Search in Google Scholar

40. Gagel B, Reinartz P, Demirel C, Kaiser HJ, Zimny M, Piroth M, et al. [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography in response evaluation after chemo-/radiotherapy of non-small-cell lung cancer: a feasibility study. BMC Cancer 2006; 6: 51.10.1186/1471-2407-6-51145697616515707Search in Google Scholar

41. Nestle U, Kremp S, Grosu AL. Practical integration of 18F-FDG-PET and PET-CT in the planning of radiotherapy for non-small cell lung cancer (NSCLC): The technical basis, ICRU-target volumes, problems, perspectives. Radiother Oncol 2006; 81: 209-25.10.1016/j.radonc.2006.09.01117064802Search in Google Scholar

42. De Ruysscher D, Wanders S, van Haren E, Hochstenbag M, Geeraedts W, Utama I, et al. Selective mediastinal node irradiation based on FDG-PET scan data in patients with non-small cell lung cancer: a prospective clinical study. Int J Radiat Oncol Biol Phys 2005; 62: 988-94.10.1016/j.ijrobp.2004.12.01915989999Search in Google Scholar

43. S teenbakkers RJ, Duppen JC, Fitton I, Deurloo KE, Zijp LJ, Comans EF, et al. Reduction of observer variation using matched CT-PET for lung cancer delineation: a three dimensional analysis. Int J Radiat Oncol Biol Phys 2006; 64: 435-48.10.1016/j.ijrobp.2005.06.03416198064Search in Google Scholar

44. Ashamalla H, Rafla S, Parikh K, Mokhtar B, Goshwami G, Kambam S, et al. The contribution of integrated PET/CT to the evolving definition of treatment volumes in radiation treatment planning in lung cancer. Int J Radiat Oncol Biol Phys 2005; 63: 1016-23.10.1016/j.ijrobp.2005.04.02115979817Search in Google Scholar

45. Lonneux M, Hamoir M, Reychler H, Maingon P, Duvillard C, Calais G, et al. Positron emission tomography with [18F]fluorodeoxyglucose improves staging and patient management in patients with head and neck squamous cell carcinoma: a multicenter prospective study. J Clin Oncol 2010; 28: 1190-5.10.1200/JCO.2009.24.629820124179Search in Google Scholar

46. Xu GT, Guan DJ, He ZY. 18FDG-PET/CT for detecting distant metastases and second primary cancers in patients with head and neck cancer. A metaanalysis. Oral Oncol 2011; 28: 1190-5.Search in Google Scholar

47. Bu rri RJ, Rangaswamy B, Kostakoglu L, Hoch B, Genden EM, Som PM, et al. Correlation of positron emission tomography standard uptake value and pathologic specimen size in cancer of the head and neck. Int J Radiat Oncol Biol Phys 2008; 71: 682-8.10.1016/j.ijrobp.2007.10.05518258379Search in Google Scholar

48. Haerle SK, Schmid DT, Ahmad N, Hany TF, Stoeckli SJ. The value of (18) F-FDG PET/CT for the detection of distant metastases in high-risk patients with head and neck squamous cell carcinoma. Oral Oncol 2011; 47: 653-9.10.1016/j.oraloncology.2011.05.01121658990Search in Google Scholar

49. Ford EC, Herman J, Yorke E, Wahl RL. 18-FDG-PET/CT for Image-guided and Intensity modulated radiotherapy. J Nucl Med 2009; 50: 1655-65.10.2967/jnumed.108.055780289967819759099Search in Google Scholar

50. Senft A, De Bree R, Hokstra O, Kuik DJ, Golding R, Oyen WJG, et al. Screening for distant metastases in head and neck cancer patients by chest CT or whole body FDG-PET: a prospective multicenter trial. Radiat Oncol 2008; 87: 221-9.10.1016/j.radonc.2008.03.00818410977Search in Google Scholar

51. De Bree R. The real additional value of FDG-PET in detecting the occult primary tumour in patients with cervical lymph node metastases of unknown primary tumour. Eur Arch Otorhinolaryngol 2010; 267: 1653-5.10.1007/s00405-010-1372-2294563220827553Search in Google Scholar

52. Strojan P, Ferlito A, Medina J, Woolgar JA, Rinaldo A, Robbins KT, et al. Contemporary managment of lymph node metastases from an unknown primary to the neck: I. A review of diagnostic approaches. Head Neck 2011; 35: 123-32.10.1002/hed.2189822034046Search in Google Scholar

53. Hamoir M, Ferlito A, Schmitz S, Hanin FX, Thariat J, Weynad B, et al. The role of neck disection in the setting of chemoradiation therapy for head and neck squamous cell carcinoma with advanced neck disease. Oral Oncology 2012; 48: 203-10.10.1016/j.oraloncology.2011.10.01522104248Search in Google Scholar

54. Conell CA, Corry J, Milner AD, Hogg A, Hicks RJ, Riscin D, et al. Clinical impact of, and prognostic stratification by, F-18 FDG PET/CT in head and neck mucosal squamous cell carcinoma. Head Neck 2007; 29: 986-95.10.1002/hed.2062917563906Search in Google Scholar

55. Scwartz DL, Ford EC, Rajendran J, Yueh B, Coltrera MD, Virgin J, et al. FDGPET/ CT- guided intensity modulated head and neck radiotherapy: A pilot investigation. Head Neck 2005; 27: 478-87.10.1002/hed.2017715772953Search in Google Scholar

56. Daisne JF, Duprez T, Weynand B, Lonneux M, Hamoir M, Reychler H, et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: Comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004; 233: 93-100.10.1148/radiol.233103066015317953Search in Google Scholar

57. Inokuchi H, Kodaira T, Tachibana H, Nakamura T, Tomita N, Nakahara R, et al. Clinical usefulness of(18)F Fluoro-2-deoxy-D-Glucose uptake in 178 head-and-neck cancer patients with nodal metastasis treated with definitive chemoradiotherapy: consideration of its prognostic value and ability to provide guidance for optimal selection of patients for planned neck dissection. Int J Radiat Oncol Biol Phys 2011; 79: 747-55.10.1016/j.ijrobp.2009.11.03420434274Search in Google Scholar

58. Greven KM, Williams D, Mattern M, West T, Kearns W, Staab D, et al. Prospective study of serial PET/CT imaging for patients with squamous cell cancer of the head and neck and the possibility of adaptive planning. [Abstract]. Int J Radiat Oncol Biol Phys 2009; 75(Suppl 1): S394 10.1016/j.ijrobp.2009.07.903Search in Google Scholar

59. Soto DE, Kessler ML, Piert M, Eisbruch A. Correlation between pretreatment FDG-PET biological target volume and anatomical location of failure after radiation therapy for head and neck cancers. Radioth Oncol 2008; 89: 13-8.10.1016/j.radonc.2008.05.021Search in Google Scholar

60. Dirix P, Vandecayeve V, De Keyzer F, Stroobants S, Hermans R, Nuyts S. Dose painting in radiotherapy for head and neck squamous cell carcinoma: Value of repeated functional imaging with 18F-FDG PET, 18F-fluoromisonidazole PET, diffusion-weighted MRI, and dynamic contrast-enhanced MRI. J Nucl Med 2009; 50: 1020-7.10.2967/jnumed.109.062638Search in Google Scholar

61. Duprez F, De Neve W, De Gersem W, Coghe M, Madani I. Adaptive dose painting by numbers for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2011; 80: 1045-55.10.1016/j.ijrobp.2010.03.028Search in Google Scholar

62. Brizel DM, Sibley GS, Prosnitz LR, Scher RL, Dewhirst MW. Tumor hypoxia adversely affects the prognosis of carcinoma of the head and neck. Int J Radiat Oncol Biol Phys 1997; 38: 285-9.10.1016/S0360-3016(97)00101-6Search in Google Scholar

63. Rajendran JG, Scwartz DL, O’Sullivan J, Peterson LM, Ng P, Scharnhorst J, et al. Tumor hypoxia imaging with F18 fluromisonidazole positron emission tomography in head and neck cancer. Clin Cancer Res 2006; 12: 5435-41.10.1158/1078-0432.CCR-05-1773473754917000677Search in Google Scholar

64. Mortensen LS, Johansen J, Kallehague J, Primdahl H, Busk M, Lassen P, et al. FAZA PET/CT hypoxia imaging in patients with squamous cell carcinoma of head and neck treated with radiotherapy: results from the DAHANCA 24 trial. Radiother Oncol 2012; 105: 14-20.10.1016/j.radonc.2012.09.01523083497Search in Google Scholar

65. Rosenthal DI, Asper JA, Barker JL, Garden AS, Chao KSC, Morrison WH, et al. Importance of patient examination to clinical quality assurance in head and neck radiation oncology. Head Neck 2006; 28: 967-73.10.1002/hed.2044616823872Search in Google Scholar

66. Barber TW, Duong CP, Leong T, Bressel M, Drummond EG, Hicks RJ. 18F-FDG PET/CT has a high impact on patient management and provides powerful prognostic stratification in the primary staging of esophageal cancer: A prospective study with mature survival data. J Nucl Med 2012; 53: 864-71.10.2967/jnumed.111.10156822582047Search in Google Scholar

67. Muijs CT, Beukema JC, Pruim J, Mul VE, Groen H, Plukker JT, et al. A systematic review on the role of FDG-PET/CT in tumour delineation and radiotherapy planning in patients with esophageal cancer. Radiother Oncol 2010; 97: 165-71.10.1016/j.radonc.2010.04.02420541273Search in Google Scholar

68. Leong T, Everitt C, Yuen K. A prospective study to evaluate the impact of FDG-PET on CT-based radiotherapy treatment planning for esophageal cancer. Radiother Oncol 2006; 78: 254-61.10.1016/j.radonc.2006.02.01416545881Search in Google Scholar

69. Schreurs LM, Busz DM, Paardekooper GM, Beukema JC, Jager PL, Van der Jagt EJ, et al. Impact of 18-fluorodeoxyglucose positron emission tomography defined target volumes in radiation treatment planning of esophageal cance: reduction in geographic misses with equal inter-observer variabiliy. Dis Esophaus 2010; 23: 483-510.Search in Google Scholar

70. Vrieze O, Haustermans K, DeWever W, Lerut T, Van Cutsem E, Ectors N, et al. Is there a role for FGD-PET in radiotherapy planning in esophageal carcinoma? Radioth Oncol 2004; 73: 269-75.Search in Google Scholar

71. Toya R, Murakami R, Imuta M, Matsuyama T, Saito T, Shiraishi S, et al. Impact of Hybrid FDG-PET/CT on Gross Tumor Volume Definition of Cervical Esophageal Cancer: Improving Inter- and Intra-observer Variations. [Abstract]. Int J Radiat Oncol Biol Phys 2011; 81(Suppl 1): S324.10.1016/j.ijrobp.2011.06.529Search in Google Scholar

72. Omloo JMT, Van Heijl M, Hoekstra OS, Van Berge Henegouen MI, Van Lanschot JJB, Sloof GW. FDG-PET parameters as prognostic factor in esophageal cancer patients: a review. Ann Surg Oncol 2011; 18: 3338-52.10.1245/s10434-011-1732-1319227321537872Search in Google Scholar

73. Mitchel DG, Snyder B, Coakley F, Reinhold C, Thomas G, Amendola M, et al. Early invasive cervical cancer: Tumor delineation by magnetic resonance imaging, computed tomography, and clinical examination, verified by pathologic results, in the ACRIN 6651/GIG 183 Intergroup study. J Clin Oncol 2006; 24: 5687-94.10.1200/JCO.2006.07.479917179104Search in Google Scholar

74. Haie-Meder C, Mazeron R, Magne N. Clinical evidence on PET-CT for radiation therapy planning in cervix and endometrial cancer. Radiother Oncol 2010; 96: 351-5.10.1016/j.radonc.2010.07.01020709417Search in Google Scholar

75. Magne N, Chargari C, Vicenzi L, Gillion N, Messai T, Magne J, et al. New trends in the evaluation and treatment of cervix cancer. The role of FDG-PET. Cancer Treatm Rev 2008; 34: 671-81.Search in Google Scholar

76. Boughanim M, Leboulleux S, Rey A, Pham CT, Zafrani Y, Duvillard P, et al. Histologic results of para-aortic lymphadenectomy in patients treated for stage Ib2/II cervical cancer with negative (18F) Fluorodeoxyglucose positron emission tomography scans in the para-aortic area. J Clin Oncol 2008; 26: 2558-61.10.1200/JCO.2007.14.393318487573Search in Google Scholar

77. Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutch DG, Powell MA, et al. Lymph node staging by positron emission tomography in cervical cancer: Realtion to prognosis. J Clin Oncol 2010; 28: 2108-13.10.1200/JCO.2009.25.415120308664Search in Google Scholar

78. Esthappan J, Mutic S, Malyapa RS, Grigsby PW, Zoberi I, Dehdashti F, et al. Treatment planning guidelines regarding the use of CT/PET-guided IMRT for cervical carcinoma with positive paraaortic lymph nodes. Int J Radiat Oncol Biol Phys 2004; 58: 1289-97.10.1016/j.ijrobp.2003.09.07415001274Search in Google Scholar

79. Esthappan J, Chaudhari S, Santanam L, Mutic S, Olsen J, MacDonald DM, et al. Prospective clinical trial of positron emission tomography/computed tomography image-guided intensity-modulated radiation therapy for cervical carcinoma with positive para-aortic lymph nodes. Int J Radiat Oncol Biol Phys 2008; 72: 1134-9.10.1016/j.ijrobp.2008.02.06318472358Search in Google Scholar

80. Kidd EA, Siegel BA, Dehdashti F, Rader JS, Mutic S, Mutch DG, et al. Clinical outcomes of definitive intensity-modulated radiation therapy with fluorodeoxyglucose - positron emission tomography simulation in patient with locally advanced cervical carcinoma. Int J Radiat Oncol Biol Phys 2010; 77: 1085-91.10.1016/j.ijrobp.2009.06.04119880262Search in Google Scholar

81. Yoon MS, Ahn SJ, Nah BS, Chung WK, Song HC, Yoo SW, et al. Metabolic response of lymph nodes immediately after RT is related with survival outcome of patients with pelvic node-positive cervical cancer using consecutive (18F)fluorodeoxyglucose-positron emission tomography/computed tomography. Int J Radiat Oncol Biol Phys 2012; 84: 491-7.10.1016/j.ijrobp.2012.05.04122818418Search in Google Scholar

82. Schwartz JK, Siegel BA, Dehdashti F, Grigsby PW. Association of post-therapy positron emission tomography with tumor response and survival in cervical carcinoma. JAMA 2007; 298: 2289-95. 10.1001/jama.298.19.228918029833Search in Google Scholar

eISSN:
1581-3207
Lingua:
Inglese
Frequenza di pubblicazione:
4 volte all'anno
Argomenti della rivista:
Medicine, Clinical Medicine, Internal Medicine, Haematology, Oncology, Radiology