1. bookVolume 32 (2022): Edizione 2 (June 2022)
    Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
access type Accesso libero

Bootstrap Methods for Epistemic Fuzzy Data

Pubblicato online: 04 Jul 2022
Volume & Edizione: Volume 32 (2022) - Edizione 2 (June 2022)<br/>Towards Self-Healing Systems through Diagnostics, Fault-Tolerance and Design (Special section, pp. 171-269), Marcin Witczak and Ralf Stetter (Eds.)
Pagine: 285 - 297
Ricevuto: 18 Oct 2021
Accettato: 20 Apr 2022
Dettagli della rivista
License
Formato
Rivista
eISSN
2083-8492
Prima pubblicazione
05 Apr 2007
Frequenza di pubblicazione
4 volte all'anno
Lingue
Inglese
Abstract

Fuzzy numbers are often used for modeling imprecise perceptions of the real-valued observations. Such epistemic fuzzy data may cause problems in statistical reasoning and data analysis. We propose a universal nonparametric technique, called the epistemic bootstrap, which could be helpful when the existing methods do not work or do not give satisfactory results. Besides the simple epistemic bootstrap, we develop its several refinements that aim to reduce the variance in statistical inference. We also perform an extended simulation study to examine statistical properties of the approaches considered. The discussion of the results is supplemented by some hints for practical use.

Keywords

Ban, A., Coroianu, L. and Grzegorzewski, P. (2015). Fuzzy Numbers: Approximations, Ranking and Applications, Polish Academy of Sciences, Warsaw. Search in Google Scholar

Casella, G. (2003). Introduction to the silver anniversary of the bootstrap, Statistical Science 18(2): 133–134.10.1214/ss/1063994967 Search in Google Scholar

Colubi, A., Fernández-García, C. and Gil, M. (2002). Simulation of random fuzzy variables: An empirical approach to statistical/probabilistic studies with fuzzy experimental data, IEEE Transactions on Fuzzy Systems 10(3): 384–390.10.1109/TFUZZ.2002.1006441 Search in Google Scholar

Couso, I. and Dubois, D. (2014). Statistical reasoning with set-valued information: Ontic vs. epistemic views, International Journal of Approximate Reasoning 55(7): 1502–1518. Search in Google Scholar

Couso, I. and Sánchez, L. (2011). Inner and outer fuzzy approximations of confidence intervals, Fuzzy Sets and Systems 184(1): 68–83.10.1016/j.fss.2010.11.004 Search in Google Scholar

Davison, A.C. and Hinkley, D.V. (1997). Bootstrap Methods and Their Application, Cambridge University Press, Cambridge.10.1017/CBO9780511802843 Search in Google Scholar

De Angelis, D. and Young, G.A. (1992). Smoothing the bootstrap, International Statistical Review 60(1): 45–56.10.2307/1403500 Search in Google Scholar

Denœux, T. (2011). Maximum likelihood estimation from fuzzy data using the EM algorithm, Fuzzy Sets and Systems 183(1): 72–91.10.1016/j.fss.2011.05.022 Search in Google Scholar

Efron, B. (1979). Bootstrap methods: Another look at the jackknife, Annals of Statistics 7(1): 1–26.10.1214/aos/1176344552 Search in Google Scholar

Ferson, S., Kreinovich, V., Hajagos, J., Oberkampf, W. and Ginzburg, L. (2007). Experimental uncertainty estimation and statistics for data having interval uncertainty, Technical Report SAND2007-0939, Applied Biomathematics, New York.10.2172/910198 Search in Google Scholar

Gil, M., Montenegro, M., González-Rodríguez, G., Colubi, A. and Casals, M. (2006). Bootstrap approach to the multi-sample test of means with imprecise data, Computational Statistics and Data Analysis 51(1): 148–162.10.1016/j.csda.2006.04.018 Search in Google Scholar

Giné, E. and Zinn, J. (1990). Bootstrapping general empirical measures, Annals of Probability 18(2): 851–869.10.1214/aop/1176990862 Search in Google Scholar

González-Rodríguez, G., Montenegro, M., Colubi, A. and Gil, M. (2006). Bootstrap techniques and fuzzy random variables: Synergy in hypothesis testing with fuzzy data, Fuzzy Sets and Systems 157(19): 2608–2613.10.1016/j.fss.2003.11.021 Search in Google Scholar

Grzegorzewski, P. (2000). Testing statistical hypotheses with vague data, Fuzzy Sets and Systems 112(3): 501–510.10.1016/S0165-0114(98)00061-X Search in Google Scholar

Grzegorzewski, P. (2001). Fuzzy tests—defuzzification and randomization, Fuzzy Sets and Systems 118(3): 437–446.10.1016/S0165-0114(98)00462-X Search in Google Scholar

Grzegorzewski, P. and Goławska, J. (2021). In search of a precise estimator based on imprecise data, Joint Proceedings of the IFSA-EUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 530–537. Search in Google Scholar

Grzegorzewski, P. and Hryniewicz, O. (2002). Computing with words and life data, International Journal of Applied Mathematics and Computer Science 12(3): 337–345. Search in Google Scholar

Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2019). Flexible bootstrap based on the canonical representation of fuzzy numbers, Proceedings of EUSFLAT 2019, Prague, Czech Republic, pp. 490–497. Search in Google Scholar

Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020a). Flexible bootstrap for fuzzy data based on the canonical representation, International Journal of Computational Intelligence Systems 13(1): 1650–1662.10.2991/ijcis.d.201012.003 Search in Google Scholar

Grzegorzewski, P., Hryniewicz, O. and Romaniuk, M. (2020b). Flexible resampling for fuzzy data, International Journal of Applied Mathematics and Computer Science 30(2): 281–297, DOI: 10.34768/amcs-2020-0022. Apri DOISearch in Google Scholar

Grzegorzewski, P. and Romaniuk, M. (2021). Epistemic bootstrap for fuzzy data, Joint Proceedings of the IFSAEUSFLAT-AGOP 2021 Conferences, Bratislava, Slovakia, pp. 538–545. Search in Google Scholar

Hall, P., DiCiccio, T. and Romano, J. (1989). On smoothing and the bootstrap, Annals of Statistics 17(2): 692–704.10.1214/aos/1176347135 Search in Google Scholar

Hukuhara, M. (1967). Integration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj 10: 205–223. Search in Google Scholar

Kołacz, A. and Grzegorzewski, P. (2019). Asymptotic algorithm for computing the sample variance of interval data, Iranian Journal of Fuzzy Systems 16(4): 83–96. Search in Google Scholar

Kroese, D.P., Taimre, T. and Botev, Z.I. (2011). Handbook of Monte Carlo Methods, Wiley, Hoboken.10.1002/9781118014967 Search in Google Scholar

Kruse, R. (1982). The strong law of large numbers for fuzzy random variables, Information Sciences 28(3): 233–241.10.1016/0020-0255(82)90049-4 Search in Google Scholar

Kwakernaak, H. (1978). Fuzzy random variables, Part I: Definitions and theorems, Information Sciences 15(1): 1–15.10.1016/0020-0255(78)90019-1 Search in Google Scholar

Lubiano, M.A., Montenegro, M., Sinova, B., de la Rosa de Sáa, S. and Gil, M.A. (2016). Hypothesis testing for means in connection with fuzzy rating scale-based data: Algorithms and applications, European Journal of Operational Research 251(3): 918–929.10.1016/j.ejor.2015.11.016 Search in Google Scholar

Lubiano, M.A., Salas, A., Carleos, C., de la Rosa de Sáa, S. and Gil, M.A. (2017). Hypothesis testing-based comparative analysis between rating scales for intrinsically imprecise data, International Journal of Approximate Reasoning 88: 128–147.10.1016/j.ijar.2017.05.007 Search in Google Scholar

Montenegro, M., Colubi, A., Casals, M. and Gil, M. (2004). Asymptotic and bootstrap techniques for testing the expected value of a fuzzy random variable, Metrika 59: 31–49.10.1007/s001840300270 Search in Google Scholar

Nguyen, H., Kreinovich, V., Wu, B. and Xiang, G. (2012). Computing Statistics under Interval and Fuzzy Uncertainty, Springer, Berlin/Heidelberg.10.1007/978-3-642-24905-1_12 Search in Google Scholar

Parchami, A. (2018). EM algorithm for maximum likelihood estimation by non-precise information, https://cran.r-project.org/package=EM.Fuzzy. Search in Google Scholar

Pedrycz, W. (1994). Why triangular membership functions?, Fuzzy Sets and Systems 64(1): 21–30.10.1016/0165-0114(94)90003-5 Search in Google Scholar

Piegat, A. (2005). A new definition of the fuzzy set, International Journal of Applied Mathematics and Computer Science 15(1): 125–140. Search in Google Scholar

Ramos-Guajardo, A., Blanco-Fernández, A. and González-Rodríguez, G. (2019). Applying statistical methods with imprecise data to quality control in cheese manufacturing, in P. Grzegorzewski et al. (Eds), Soft Modeling in Industrial Manufacturing, Springer, Berlin/Heidelberg, pp. 127–147.10.1007/978-3-030-03201-2_8 Search in Google Scholar

Ramos-Guajardo, A. and Grzegorzewski, P. (2016). Distance-based linear discriminant analysis for interval-valued data, Information Sciences 372: 591–607.10.1016/j.ins.2016.08.068 Search in Google Scholar

Ramos-Guajardo, A. and Lubiano, M. (2012). k-Sample tests for equality of variances of random fuzzy sets, Computational Statistics and Data Analysis 56(4): 956–966.10.1016/j.csda.2010.11.025 Search in Google Scholar

Romaniuk, M. (2019). On some applications of simulations in estimation of maintenance costs and in statistical tests for fuzzy settings, in A. Steland et al. (Eds), Stochastic Models, Statistics and Their Applications, Springer, Cham, pp. 437–448.10.1007/978-3-030-28665-1_33 Search in Google Scholar

Romaniuk, M. and Hryniewicz, O. (2019). Interval-based, nonparametric approach for resampling of fuzzy numbers, Soft Computing 23: 5883–5903.10.1007/s00500-018-3251-5 Search in Google Scholar

Romaniuk, M. and Hryniewicz, O. (2021). Discrete and smoothed resampling methods for interval-valued fuzzy numbers, IEEE Transactions on Fuzzy Systems 29(3): 599–611.10.1109/TFUZZ.2019.2957253 Search in Google Scholar

Sevinc, B., Cetintav, B., Esemen, M. and Gurler, S. (2019). RSSampling: A pioneering package for ranked set sampling, The R Journal 11(1): 401–415.10.32614/RJ-2019-039 Search in Google Scholar

Shao, J. and Tu, D. (1995). The Jackknife and Bootstrap, Springer, New York.10.1007/978-1-4612-0795-5 Search in Google Scholar

Silverman, B.W. and Young, G.A. (1987). The bootstrap: To smooth or not to smooth?, Biometrika 74(3): 469–479.10.1093/biomet/74.3.469 Search in Google Scholar

Suresh, H. and Guttag, J.V. (2021). A framework for understanding sources of harm throughout the machine learning life cycle, Equity and Access in Algorithms, Mechanisms, and Optimization (EAAMO ’21), New York, USA.10.1145/3465416.3483305 Search in Google Scholar

Vavasis, S.A. (1991). Nonlinear Optimization: Complexity Issues, Oxford University Press, New York. Search in Google Scholar

Wang, D. and Hryniewicz, O. (2015). A fuzzy nonparametric Shewhart chart based on the bootstrap approach, International Journal of Applied Mathematics and Computer Science 25(2): 389–401, DOI: 10.1515/amcs-2015-0030. Apri DOISearch in Google Scholar

Wolfe, D.A. (2004). Ranked set sampling: An approach to more efficient data collection, Statistical Science 19(4): 636–643.10.1214/088342304000000369 Search in Google Scholar

Zadeh, L.A. (1973). Outline of a new approach to the analysis of complex systems and decision processes, IEEE Transactions on Systems, Man and Cybernetics SMC-3(1): 28–44.10.1109/TSMC.1973.5408575 Search in Google Scholar

Articoli consigliati da Trend MD

Pianifica la tua conferenza remota con Sciendo