Zacytuj

Precision feeding, a practice involving customized diets tailored to individual nutritional requirements, has emerged as a promising paradigm within animal production, underpinned by advanced technologies and data analytics. This mini review embarks on an exploration of the evolutionary trajectory of precision feeding and its profound ramifications on animal nutrition, environmental sustainability, and animal welfare. Prominent technological advancements, exemplified by sensors and automation, have wrought transformative change across various sectors, spanning from dairy farming to poultry production. These technological innovations facilitate real-time monitoring and data accrual, thereby augmenting feed efficiency and fostering animal well-being. Environmental sustainability assumes an integral role in the precision feeding paradigm. Through the reduction of feed wastage and the minimization of nutrient excretion, it serves as a potent mitigating solution against the environmental footprint synonymous with livestock production. This entails a noteworthy reduction in greenhouse gas emissions and the prevention of water pollution. The interplay between precision feeding and animal welfare is intricate and multifaceted. On one hand, it furnishes farmers with the capability to expeditiously monitor and address animal health issues. On the other hand, it poses challenges associated with social interactions and the fulfilment of individualized nutritional needs. The future trajectory of precision feeding is inherently tied to the resolution of imminent challenges, including the imperative for real-time monitoring, the development of cost-effective large-scale implementation, and comprehensive elucidation of long-term effects on animal health and welfare. The ensuing panorama portends promising prospects, encompassing the optimization of resource efficiency, diminution of environmental impacts, and the formulation of personalized nutritional strategies. In summation, precision feeding stands as a domain teeming with potential, poised to optimize both animal nutrition and the sustainability quotient within animal production. Realizing this potential hinge on the adept addressing of forthcoming challenges, coupled with the astute harnessing of emergent technologies, in our collective pursuit of a more sustainable and ethically principled agricultural landscape.

eISSN:
2537-3137
Język:
Angielski
Częstotliwość wydawania:
2 razy w roku
Dziedziny czasopisma:
Architecture and Design, Landscape Architecture, Gardens, Landscapes, Life Sciences, Biotechnology, Plant Science, Ecology