Otwarty dostęp

The Impact of the FLC Controller’s Settings on the Precision of the Positioning of a Payload Transferred by a Mobile Crane


Zacytuj

1. Al-Humaidi H. M., Hadipriono Tan F. (2009), Mobile crane safe operation approach to prevent electrocution using fuzzy-set logic models, Advances in Engineering Software, 40, 686-696.10.1016/j.advengsoft.2008.11.016Search in Google Scholar

2. Cho S. K., Lee H. H. (2002), A fuzzy-logic antiswing controller for three-dimensional overhead cranes, ISA Transactions, 41, 235-243.10.1016/S0019-0578(07)60083-4Search in Google Scholar

3. Hong K. S., Ngo Q. H. (2012), Dynamics of the container crane on a mobile harbor, Ocean Engineering, 53, 16-24.10.1016/j.oceaneng.2012.06.013Search in Google Scholar

4. Janusz J., Kłosiński J. (2008), Fuzzy controlling of a mobile crane ensuring stable work, Acta Mechanica Slovaca, 3-C, 215-222.Search in Google Scholar

5. Jerman B., Podrzaj P., Kramar J. (2004), An investigation of slewing-crane dynamics during slewing motion - development and verification of a mathematical model, International Journal of Mechanical Sciences, 46, 729-750.10.1016/j.ijmecsci.2004.05.006Search in Google Scholar

6. Ju F., Choo Y. S. Cui F. S. (2006),Dynamic response of tower crane induced by pendulum motion of the payload, International Journal of Solids and Structures, 43, 376-389.10.1016/j.ijsolstr.2005.03.078Search in Google Scholar

7. Kłosiński J. (2005), Swing-free stop control of the slewing motion of the mobile crane, Control Engineering Practice, 13, 451-460.10.1016/j.conengprac.2004.04.007Search in Google Scholar

8. Kłosiński J. Majewski L. (2004), Numerical investigations of the system with fuzzy logic controller used to controlling the working motion of mobile crane, Proceedings of the IX Conference on the TMM, Liberec, 445-450.Search in Google Scholar

9. Kłosiński J., Janusz J. (2009), Control of operational motions of a mobile crane under a threat of loss of stability, Solid State Phenomena, Vol.144, 77-82.Search in Google Scholar

10. Kłosiński J. (2011), Fuzzy logic-based control of a mobile crane slewing motion, Mechanics and Mechanical Engineering, Vol. 15, No 4, 73-80.Search in Google Scholar

11. Lee T. Y., Lee S. R. (2002), Anti-sway and position 3D control of the nonlinear crane system using fuzzy algorithm, Inter. Journal of the Korean Society of Precision Engineering, Vol.3, No.1, 66-75.Search in Google Scholar

12. Liu D., Yi J., Zhao D., Wang W. (2005), Adaptive sliding mode fuzzy control for a two-dimensional overhead crane, Mechatronics, 15, 505-522.10.1016/j.mechatronics.2004.11.004Search in Google Scholar

13. Mahfouf M., Kee C. H., Abbod M. F., Linkens D. A. (2000), Fuzzy logic-based anti-sway control design for overhead cranes, Neural Computing & Applications, 9, 38-43.10.1007/s005210070033Search in Google Scholar

14. Neupert J., Arnold E., Schneider K., Sawodny O. (2010), Tracking and anti-sway control for boom cranes, Control Engineering Practice, 18, 31-44.10.1016/j.conengprac.2009.08.003Search in Google Scholar

15. Pędrak T., Kłosiński J. (2009), Control of mobile crane by means of fuzzy logic controller, Solid State Phenomena, Vol.144, 202-207.Search in Google Scholar

16. Schaub H. (2008), Rate-based ship-mounted crane payload pendulation control system, Control Engineering Practice, 16, 132-145.10.1016/j.conengprac.2007.04.011Search in Google Scholar

17. Smoczek J. (2014), Fuzzy crane control with sensorless payload deflection feedback for vibration reduction, Mechanical Systems and Signal Processing, 46, 70-81.10.1016/j.ymssp.2013.12.012Search in Google Scholar

18. Smoczek J., Szpytko J. (2012), Design of gain scheduling anti-sway controller using genetic fuzzy system, 17th IFAC Int. Conf. on Methods and Models in Automation and Robotics MMAR, 573-578.Search in Google Scholar

19. Smoczek J., Szpytko J., Hyla, P. (2013), The anti-sway crane control system with using dynamic vision system, Solid State Phenomena, 198, 589-593.10.4028/www.scientific.net/SSP.198.589Search in Google Scholar

20. Sochacki W. (2007), The dynamic stability of a laboratory model of a truck crane, Thin-Walled Structures, 45, 927-930.10.1016/j.tws.2007.08.023Search in Google Scholar

21. Solihin M., Wahyudi I., Legowo A. (2010), Fuzzy-tuned antiswing control of automatic gantry crane, Journal of Vibration and Control, 16(1), 127-145.10.1177/1077546309103421Search in Google Scholar

22. Terashima K., Shen Y., Yano K. (2007), Modeling and optimal control of a rotary crane using the straight transfer transformation method, Control Engineering Practice, 15, 1179-1192.10.1016/j.conengprac.2007.02.008Search in Google Scholar

23. Tomczyk J., Cink J., Kosucki A. (2014), Dynamics of an overhead crane under a wind disturbance condition, Automation in Construction, 42, 100-111.10.1016/j.autcon.2014.02.013Search in Google Scholar

24. Yi J., Yubazaki N., Hirota K. (2003), Anti-swing and positioning control of overhead traveling crane, Information Sciences, 155,19-4210.1016/S0020-0255(03)00127-0Search in Google Scholar