Otwarty dostęp

Investigation of Gas Foil Bearings With an Adaptive and Non-Linear Structure


Zacytuj

1. Aksoy S., Aksit M.F. (2015), A fully coupled 3D thermo-elastohydrodynamics model for a bump-type compliant foil journal bearing, Tribology International, 82, 110–122.10.1016/j.triboint.2014.10.001Search in Google Scholar

2. DellaCorte C. (2012), Oil-Free shaft support system rotordynamics: Past, present and future challenges and opportunities, Mechanical Systems and Signal Processing, 29, 67–76.10.1016/j.ymssp.2011.07.024Search in Google Scholar

3. DellaCorte C., Radil K.C., Bruckner R.J., Howard A. (2008), Design, Fabrication, and Performance of Open Source Generation I and II Compliant Hydrodynamic Gas Foil Bearings, Tribology Transactions, 51(3), 254–264.10.1080/10402000701772579Search in Google Scholar

4. Enemark S., Savi M.A., Santos I.F. (2015), Experimental analyses of dynamical systems involving shape memory alloys, Smart Structures and Systems, 15(6), 1521–1542.10.12989/sss.2015.15.6.1521Search in Google Scholar

5. Fanning C.E., Blanchet T.A. (2008), High-temperature evaluation of solid lubricant coatings in a foil thrust bearing, Wear, 265, 1076–1086.10.1016/j.wear.2008.02.009Search in Google Scholar

6. Feng K., Hu J., Liu W., Zhao X., Li W. (2015), Structural characterization of a novel gas foil bearing with nested compression springs: analytical modeling and experimental measurement, ASME Journal of Engineering for Gas Turbines and Power, 138(1), 012504–11.10.1115/1.4031203Search in Google Scholar

7. Gupta S., Filimonov D., Zaitsev V., Palanisamy T., El-Raghy T., Barsoum M.W. (2009), Study of tribofilms formed during dry sliding of Ta2AlC/Ag or Cr2AlC/Ag composites against Ni-based superalloys and Al2O3, Wear, 267, 1490–1500.10.1016/j.wear.2009.03.021Search in Google Scholar

8. Howard S.A. (1999), Rotordynamics and design methods of an oil-free turbocharger, Tribology Transactions, 42(1), 174–17910.1080/10402009908982205Search in Google Scholar

9. Ji J.C., Hansen C.H., Zander A.C. (2008), Nonlinear dynamics of magnetic bearing systems, Journal of Intelligent Material Systems and Structures, 19(12), 1471–1491.10.1177/1045389X08088666Search in Google Scholar

10. Kiciński J. (2015), The dynamics of microturbines lubricated using unconventional agents, Bulletin of the Polish Academy of Sciences: Technical Sciences, 63(2), 369–377.10.1515/bpasts-2015-0041Search in Google Scholar

11. Kiciński J., Żywica G. (2012), The numerical analysis of the steam microturbine rotor supported on foil bearings, Advances in Vibration Engineering, 11(2), 113–119.Search in Google Scholar

12. Kosowski K., Piwowarski M., Stępień R., Włodarski W. (2018), Design and investigations of the ethanol microturbine, Archives of Thermodynamics, 39(2), 41–54.Search in Google Scholar

13. Le Lez S., Arghir M., Frene J. (2007), Static and dynamic characterization of a bump-type foil bearing structure, Journal of Tribology, 129, 75–83.10.1115/1.2390717Search in Google Scholar

14. Lubieniecki M., Roemer J., Martowicz A., Bagiński P., Żywica G., Uhl T. (2016), An experimental evaluation of the control methodology for distributed actuators integrated within a foil bearing, ICAST2016, 27th International Conference on Adaptive Structures and Technologies, New York, USA.Search in Google Scholar

15. Peng J., Zhu K.-Q. (2005), Hydrodynamic characteristics of ER journal bearings with external electric field imposed on the contractive part, Journal of Intelligent Material Systems and Structures, 16(6), 493–499.10.1177/1045389X05052312Search in Google Scholar

16. Shen C., Wang D., Liu Y., Kong F., Tse P.W. (2014), Recognition of rolling bearing fault patterns and sizes based on two-layer support vector regression machines, Smart Structures and Systems, 13(3), 453–471.10.12989/sss.2014.13.3.453Search in Google Scholar

17. Tkacz E., Kozanecki Z., Kozanecka D., Łagodziński J. (2017), A self-acting gas journal bearing with a flexibly supported foil – Numerical model of bearing dynamics, International Journal of Structural Stability and Dynamics, 17(5), 1740012.10.1142/S0219455417400120Search in Google Scholar

18. Urreta H., Leicht Z., Sanchez A., Agirre A., Kuzhir P., Magnac G. (2010), Hydrodynamic bearing lubricated with magnetic fluids, Journal of Intelligent Material Systems and Structures, 21(15), 1491–1499.10.1177/1045389X09356007Search in Google Scholar

19. Von Osmanski S., Larsen J.S., Santos I.F. (2017), A fully coupled air foil bearing model considering friction – Theory & experiment, Journal of Sound and Vibration, 400, 660–676.10.1016/j.jsv.2017.04.008Search in Google Scholar

20. Włodarski W. (2018), Experimental investigations and simulations of the microturbine unit with permanent magnet generator, Energy, 158, 59–71.10.1016/j.energy.2018.05.199Search in Google Scholar

21. Wu R.Q., Zhang W., Yao M.H. (2018), Nonlinear dynamics near resonances of a rotor-active magnetic bearings system with 16-pole legs and time varying stiffness, Mechanical Systems and Signal Processing, 100, 113–134.10.1016/j.ymssp.2017.07.033Search in Google Scholar

22. Zhao Y., Zhang B., An G., Liu Z., Cai L. (2016), A hybrid method for dynamic stiffness identification of bearing joint of high speed spindles, Structural Engineering and Mechanics, 57(1), 141–159.10.12989/sem.2016.57.1.141Search in Google Scholar

23. Żywica G. (2013), The dynamic performance analysis of the foil bearing structure, Acta Mechanica et Automatica, 7(1), 58–62.10.2478/ama-2013-0011Search in Google Scholar

24. Żywica G., Bagiński P., Banaszek S. (2016a), Experimental studies on foil bearing with a sliding coating made of synthetic material, Journal of Tribology, 138(1), 011301.10.1115/1.4031396Search in Google Scholar

25. Żywica G., Kiciński J., Bagiński P. (2016b), The static and dynamic numerical analysis of the foil bearing structure, Journal of Vibration Engineering & Technologies, 4(3), 213–220.Search in Google Scholar