Otwarty dostęp

Finite element modeling of continuous drive friction welding of Al6061 alloy


Zacytuj

Sahin M. Joining of aluminium and copper materials with friction welding, Int J Adv Manuf Technol. 2010;49(5–8):527–34. https://doi.org/10.1007/s00170-009-2443-7. SahinM Joining of aluminium and copper materials with friction welding Int J Adv Manuf Technol 2010 49 5–8 527 34 https://doi.org/10.1007/s00170-009-2443-7. 10.1007/s00170-009-2443-7 Search in Google Scholar

Yilbas BS, Sahin AZ, Coban A, Abdul Aleem BJ. Investigation into the properties of friction-welded aluminium bars, J Mater Process Technol. 1995;54(1–4):76–81. https://doi.org/10.1016/0924-0136(95)01923-5. YilbasBS SahinAZ CobanA Abdul AleemBJ Investigation into the properties of friction-welded aluminium bars J Mater Process Technol 1995 54 1–4 76 81 https://doi.org/10.1016/0924-0136(95)01923-5. 10.1016/0924-0136(95)01923-5 Search in Google Scholar

Yang YC, Chen WL, Lee HL. A Nonlinear Inverse Problem in Estimating the Heat Generation in Rotary Friction Welding, Numer Heat Transf A. 2011;59(2):130–49. https://doi.org/10.1080/10407782.2011.540965. YangYC ChenWL LeeHL A Nonlinear Inverse Problem in Estimating the Heat Generation in Rotary Friction Welding Numer Heat Transf A 2011 59 2 130 49 https://doi.org/10.1080/10407782.2011.540965. 10.1080/10407782.2011.540965 Search in Google Scholar

Schmicker D, Persson P, Strackeljan J. Implicit Geometry Meshing for the simulation of Rotary Friction Welding, J Comput Phys. 2014;270:478–89. https://doi.org/10.1016/j.jcp.2014.04.014. SchmickerD PerssonP StrackeljanJ Implicit Geometry Meshing for the simulation of Rotary Friction Welding J Comput Phys 2014 270 478 89 https://doi.org/10.1016/j.jcp.2014.04.014. 10.1016/j.jcp.2014.04.014 Search in Google Scholar

Li W, Wang F. Modeling of continuous drive friction Welding of mild steel, Mater Sci Eng A. 2011;528(18):5921–6. https://doi.org/10.1016/j.msea.2011.04.001. LiW WangF Modeling of continuous drive friction Welding of mild steel Mater Sci Eng A 2011 528 18 5921 6 https://doi.org/10.1016/j.msea.2011.04.001. 10.1016/j.msea.2011.04.001 Search in Google Scholar

Kalsi NS, Sharma VS. A statistical analysis of rotary friction welding of steel with varying carbon in work-pieces, Int J Adv Manuf Technol. 2011;57(9–12):957–67. https://doi.org/10.1007/s00170-011-3361-z. KalsiNS SharmaVS A statistical analysis of rotary friction welding of steel with varying carbon in work-pieces Int J Adv Manuf Technol 2011 57 9–12 957 67 https://doi.org/10.1007/s00170-011-3361-z. 10.1007/s00170-011-3361-z Search in Google Scholar

Nguyen TC, Weckman DC. A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel, Metall Mater Trans, B, Process Metall Mater Proc Sci. 2006;37(2):275–92. https://doi.org/10.1007/BF02693157. NguyenTC WeckmanDC A thermal and microstructure evolution model of direct-drive friction welding of plain carbon steel Metall Mater Trans, B, Process Metall Mater Proc Sci 2006 37 2 275 92 https://doi.org/10.1007/BF02693157. 10.1007/BF02693157 Search in Google Scholar

Maalekian M, Kozeschnik E, Brantner HP, Cerjak H. Comparative analysis of heat generation in friction welding of steel bars, Acta Mater. 2008;56(12):2843–55. https://doi.org/10.1016/j.actamat.2008.02.016. MaalekianM KozeschnikE BrantnerHP CerjakH Comparative analysis of heat generation in friction welding of steel bars Acta Mater 2008 56 12 2843 55 https://doi.org/10.1016/j.actamat.2008.02.016. 10.1016/j.actamat.2008.02.016 Search in Google Scholar

Maalekian M, Cerjak H. Thermal-Phase Transformation Modelling and Neural Network Analysis of Friction Welding of Non-Circular Eutectoid Steel Components, Welding in the World 53 (2009) R44–R51. https://doi.org/10.1007/BF03266702. MaalekianM CerjakH Thermal-Phase Transformation Modelling and Neural Network Analysis of Friction Welding of Non-Circular Eutectoid Steel Components Welding in the World 53 2009 R44 R51 https://doi.org/10.1007/BF03266702. 10.1007/BF03266702 Search in Google Scholar

Can A., Sahin M., and Kucuk M. Modeling of Friction Welding, in: International Science Conference, 2010, II:135–142. CanA. SahinM. KucukM Modeling of Friction Welding in: International Science Conference 2010 II 135 142 Search in Google Scholar

Maalekian M. Friction welding critical assessment of literature, Sci Technol Weld Join. 2007;12(8):738–59. https://doi.org/10.1179/174329307X249333. MaalekianM Friction welding critical assessment of literature Sci Technol Weld Join 2007 12 8 738 59 https://doi.org/10.1179/174329307X249333. 10.1179/174329307X249333 Search in Google Scholar

Özdemir N. Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed, Mater Lett. 2005;59(19–20):2504–9. https://doi.org/10.1016/j.matlet.2005.03.034. ÖzdemirN Investigation of the mechanical properties of friction-welded joints between AISI 304L and AISI 4340 steel as a function rotational speed Mater Lett 2005 59 19–20 2504 9 https://doi.org/10.1016/j.matlet.2005.03.034. 10.1016/j.matlet.2005.03.034 Search in Google Scholar

Özdemir N., Sarsılmaz F., Hasçalık A. Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel, Mater Des. 2007;28(1):301–7. https://doi.org/10.1016/j.matdes.2005.06.011. ÖzdemirN. SarsılmazF. HasçalıkA Effect of rotational speed on the interface properties of friction-welded AISI 304L to 4340 steel Mater Des 2007 28 1 301 7 https://doi.org/10.1016/j.matdes.2005.06.011. 10.1016/j.matdes.2005.06.011 Search in Google Scholar

Bouarroudj E, Chikh S, Abdi S, Miroud D. Thermal analysis during a rotational friction welding, Appl Therm Eng. 2017;110:1543–53. https://doi.org/10.1016/j.applthermaleng.2016.09.067. BouarroudjE ChikhS AbdiS MiroudD Thermal analysis during a rotational friction welding Appl Therm Eng 2017 110 1543 53 https://doi.org/10.1016/j.applthermaleng.2016.09.067. 10.1016/j.applthermaleng.2016.09.067 Search in Google Scholar

Dawood A, Butt S, Hussain G, Siddiqui M, Maqsood A, Zhang F. Thermal Model of Rotary Friction Welding for Similar and Dissimilar Metals, Metals (Basel) 2017;7(6):224. https://doi.org/10.3390/met7060224. DawoodA ButtS HussainG SiddiquiM MaqsoodA ZhangF Thermal Model of Rotary Friction Welding for Similar and Dissimilar Metals Metals (Basel) 2017 7 6 224 https://doi.org/10.3390/met7060224. 10.3390/met7060224 Search in Google Scholar

Juan J. Valencia and Peter N. Quested Thermophysical Properties, in: ASM Handbook, Volume 15. ASM International; 2008. pp. 468–81. JuanJ Valencia and Peter N. Quested Thermophysical Properties in: ASM Handbook 15 ASM International 2008 468 81 10.31399/asm.hb.v15.a0005240 Search in Google Scholar

Brandt R, Neuer G., Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys up to and above the Melting Temperature, Int J Thermophys. 2007;28(5):1429–46. https://doi.org/10.1007/s10765-006-0144-0. BrandtR NeuerG Electrical Resistivity and Thermal Conductivity of Pure Aluminum and Aluminum Alloys up to and above the Melting Temperature Int J Thermophys 2007 28 5 1429 46 https://doi.org/10.1007/s10765-006-0144-0. 10.1007/s10765-006-0144-0 Search in Google Scholar

Leitner M, Leitner T, Schmon A, Aziz K, Pottlacher G. Thermophysical Properties of Liquid Aluminum, Metal-lurgical and Materials Transactions A. https://doi.org/10.1007/s11661-017-4053-6. LeitnerM LeitnerT SchmonA AzizK PottlacherG Thermophysical Properties of Liquid Aluminum Metal-lurgical and Materials Transactions A https://doi.org/10.1007/s11661-017-4053-6. 10.1007/s11661-017-4053-6 Search in Google Scholar

eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties