Otwarty dostęp

Experimental investigation of the electrochemical micromachining process of Ti-6Al-4V titanium alloy under the influence of magnetic field


Zacytuj

Fig. 1

Experimental setup for ECMM. ECMM, electrochemical micromachining.
Experimental setup for ECMM. ECMM, electrochemical micromachining.

Fig. 2

Magnetic field measurement of magnets using gauss meter.
Magnetic field measurement of magnets using gauss meter.

Fig. 3

Placement of magnets in the machining cycle.
Placement of magnets in the machining cycle.

Fig. 4

Methodology of TOPSIS (close to ideal solution).
Methodology of TOPSIS (close to ideal solution).

Fig. 5

Improvement in MRR and OC in presence of magnetic field when electrochemical micromachined Ti-6Al-4V. MRR, material removal rate; OC, overcut.
Improvement in MRR and OC in presence of magnetic field when electrochemical micromachined Ti-6Al-4V. MRR, material removal rate; OC, overcut.

Fig. 6

EDS analysis of electrochemical micromachined Ti-6Al-4V hole profile: (A) without magnetic field and (B) with magnetic field. EDS, energy dispersive X-ray spectroscopy.
EDS analysis of electrochemical micromachined Ti-6Al-4V hole profile: (A) without magnetic field and (B) with magnetic field. EDS, energy dispersive X-ray spectroscopy.

Fig. 7

Hole profile of electrochemical micromachined Ti-6Al-4V: (A) without and (B) with magnetic field.
Hole profile of electrochemical micromachined Ti-6Al-4V: (A) without and (B) with magnetic field.

Fig. 8

Atomic force microscopy of electrochemical micromachined Ti-6Al-4V hole profile: (A) without and (B) with magnetic field.
Atomic force microscopy of electrochemical micromachined Ti-6Al-4V hole profile: (A) without and (B) with magnetic field.

Fig. 9

XRD analysis of electrochemical micromachined Ti-6Al-4V hole profile: (A) Without and (B) With magnetic field. XRD, x-ray diffraction.
XRD analysis of electrochemical micromachined Ti-6Al-4V hole profile: (A) Without and (B) With magnetic field. XRD, x-ray diffraction.

Topographical analysis of electrochemical micromachined Ti-6Al-4V hole profile.

ECMM environment Hole surface roughness (nm)
No magnetic field 159
Magnetic field 71

Residual stress analysis of electrochemical micromachined Ti-6Al-4V hole profile.

No magnetic field Magnetic field
Residual stress values (MPa) 259.62 264.89

Experimental details of ECMM setup.

System working condition
Parameters Range
Working voltage 150 V DC
Gap voltage 0–10 V
Electrolyte NaNO3 + Water
Magnets Neodymium 40 × 20 × 10 mm
Tool Copper: ϕ 0.6 mm
Workpiece Ti-6Al-4V: 30 × 10 × 0.1 mm

TOPSIS evaluation for ECMM of Ti-6Al-4V under nonmagnetic field.

S. No. Concentration of electrolyte (g/l) Ip (A) Ton (μs) DF Weighted matrix Distance from ideal solution Closeness coefficient Rank
WMRR WOC Eij+ Eij CCij
1 15 1.20 300 0.5 0.08 0.09 0.05 0.03 0.36 18
2 15 1.20 300 0.5 0.08 0.09 0.05 0.03 0.37 16
3 15 1.20 300 0.5 0.08 0.09 0.05 0.03 0.36 17
4 15 1.35 400 0.6 0.13 0.10 0.02 0.06 0.78 3
5 15 1.35 400 0.6 0.13 0.10 0.02 0.06 0.78 1
6 15 1.35 400 0.6 0.13 0.10 0.02 0.06 0.78 2
7 15 1.50 500 0.7 0.10 0.09 0.04 0.03 0.48 10
8 15 1.50 500 0.7 0.10 0.09 0.04 0.03 0.48 12
9 15 1.50 500 0.7 0.10 0.09 0.04 0.03 0.48 11
10 22.5 1.20 400 0.7 0.08 0.12 0.06 0.00 0.03 25
11 22.5 1.20 400 0.7 0.08 0.12 0.07 0.00 0.00 27
12 22.5 1.20 400 0.7 0.08 0.12 0.06 0.00 0.01 26
13 22.5 1.35 500 0.5 0.10 0.09 0.04 0.04 0.50 8
14 22.5 1.35 500 0.5 0.10 0.09 0.04 0.03 0.50 9
15 22.5 1.35 500 0.5 0.10 0.09 0.03 0.04 0.51 7
16 22.5 1.50 300 0.6 0.08 0.08 0.05 0.04 0.43 15
17 22.5 1.50 300 0.6 0.09 0.08 0.05 0.04 0.43 14
18 22.5 1.50 300 0.6 0.09 0.08 0.05 0.04 0.44 13
19 30 1.20 500 0.6 0.10 0.09 0.03 0.03 0.52 4
20 30 1.20 500 0.6 0.10 0.09 0.03 0.03 0.51 5
21 30 1.20 500 0.6 0.10 0.10 0.03 0.03 0.51 6
22 30 1.35 300 0.7 0.09 0.10 0.05 0.02 0.24 24
23 30 1.35 300 0.7 0.09 0.10 0.05 0.02 0.25 23
24 30 1.35 300 0.7 0.09 0.10 0.05 0.02 0.26 22
25 30 1.50 400 0.5 0.08 0.10 0.05 0.02 0.31 21
26 30 1.50 400 0.5 0.09 0.10 0.05 0.02 0.32 19
27 30 1.50 400 0.5 0.09 0.10 0.05 0.02 0.31 20

TOPSIS evaluation for ECMM of Ti-6Al-4V under magnetic field (repulsion).

S. No. Concentration of electrolyte (g/l) Ip (A) Ton (μs) DF Weighted matrix Distance from ideal solution Closeness coefficient Rank
WMRR WOC Eij+ Eij CCij
1 15 1.20 300 0.5 0.05 0.08 0.11 0.05 0.30 17
2 15 1.20 300 0.5 0.05 0.08 0.11 0.05 0.31 16
3 15 1.20 300 0.5 0.05 0.08 0.11 0.05 0.30 18
4 15 1.35 400 0.6 0.16 0.10 0.02 0.11 0.82 1
5 15 1.35 400 0.6 0.16 0.10 0.03 0.11 0.82 2
6 15 1.35 400 0.6 0.16 0.10 0.03 0.11 0.81 3
7 15 1.50 500 0.7 0.11 0.09 0.06 0.07 0.54 11
8 15 1.50 500 0.7 0.11 0.09 0.06 0.07 0.53 12
9 15 1.50 500 0.7 0.11 0.09 0.06 0.07 0.54 10
10 22.5 1.20 400 0.7 0.06 0.12 0.11 0.01 0.05 25
11 22.5 1.20 400 0.7 0.06 0.13 0.12 0.01 0.04 27
12 22.5 1.20 400 0.7 0.06 0.12 0.11 0.01 0.05 26
13 22.5 1.35 500 0.5 0.11 0.08 0.05 0.07 0.57 9
14 22.5 1.35 500 0.5 0.11 0.09 0.05 0.07 0.57 8
15 22.5 1.35 500 0.5 0.11 0.09 0.05 0.07 0.57 7
16 22.5 1.50 300 0.6 0.06 0.08 0.10 0.05 0.32 13
17 22.5 1.50 300 0.6 0.06 0.08 0.10 0.05 0.32 15
18 22.5 1.50 300 0.6 0.06 0.08 0.10 0.05 0.32 14
19 30 1.20 500 0.6 0.12 0.09 0.05 0.07 0.60 4
20 30 1.20 500 0.6 0.12 0.09 0.05 0.07 0.58 6
21 30 1.20 500 0.6 0.12 0.10 0.05 0.07 0.58 5
22 30 1.35 300 0.7 0.07 0.11 0.10 0.03 0.22 21
23 30 1.35 300 0.7 0.07 0.11 0.10 0.03 0.21 24
24 30 1.35 300 0.7 0.07 0.11 0.10 0.03 0.21 23
25 30 1.50 400 0.5 0.06 0.10 0.10 0.03 0.23 20
26 30 1.50 400 0.5 0.06 0.10 0.10 0.03 0.23 19
27 30 1.50 400 0.5 0.06 0.10 0.10 0.03 0.22 22

TOPSIS evaluation for ECMM of Ti-6Al-4V under magnetic field (attraction).

S. No. Concentration of electrolyte (g/l) Ip (A) Ton (μs) DF Weighted matrix Distance from ideal solution Closeness coefficient Rank
WMRR WOC Eij+ Eij CCij
1 15 1.20 300 0.5 0.07 0.08 0.09 0.05 0.34 16
2 15 1.20 300 0.5 0.07 0.08 0.09 0.04 0.34 17
3 15 1.20 300 0.5 0.07 0.08 0.09 0.04 0.33 18
4 15 1.35 400 0.6 0.16 0.10 0.02 0.09 0.82 1
5 15 1.35 400 0.6 0.16 0.10 0.02 0.09 0.80 3
6 15 1.35 400 0.6 0.16 0.10 0.02 0.09 0.82 2
7 15 1.50 500 0.7 0.09 0.09 0.07 0.04 0.40 10
8 15 1.50 500 0.7 0.09 0.09 0.07 0.04 0.40 11
9 15 1.50 500 0.7 0.09 0.09 0.07 0.04 0.40 12
10 22.5 1.20 400 0.7 0.07 0.13 0.10 0.00 0.03 26
11 22.5 1.20 400 0.7 0.07 0.13 0.10 0.00 0.03 27
12 22.5 1.20 400 0.7 0.07 0.12 0.10 0.00 0.03 25
13 22.5 1.35 500 0.5 0.10 0.09 0.06 0.05 0.43 8
14 22.5 1.35 500 0.5 0.09 0.09 0.07 0.05 0.41 9
15 22.5 1.35 500 0.5 0.10 0.08 0.06 0.05 0.44 6
16 22.5 1.50 300 0.6 0.08 0.08 0.08 0.05 0.37 14
17 22.5 1.50 300 0.6 0.08 0.08 0.08 0.05 0.37 15
18 22.5 1.50 300 0.6 0.08 0.08 0.08 0.05 0.37 13
19 30 1.20 500 0.6 0.10 0.09 0.06 0.05 0.45 5
20 30 1.20 500 0.6 0.10 0.09 0.06 0.05 0.44 7
21 30 1.20 500 0.6 0.10 0.09 0.06 0.05 0.46 4
22 30 1.35 300 0.7 0.08 0.11 0.08 0.02 0.21 22
23 30 1.35 300 0.7 0.08 0.11 0.08 0.02 0.21 23
24 30 1.35 300 0.7 0.08 0.11 0.08 0.02 0.22 21
25 30 1.50 400 0.5 0.08 0.10 0.09 0.03 0.25 20
26 30 1.50 400 0.5 0.08 0.10 0.08 0.03 0.26 19
27 30 1.50 400 0.5 0.08 0.10 0.09 0.02 0.20 24

Computational steps of SIMOS weighting procedure.

Subset criteria Number of criteria (variables) Number of position Non-normalized weighted matrix Total (%)
MRR 1 1 1/2*100 = 50~50 50
OC 1 2 11/2*100 =50~50 50

Orthogonal array experiment (L27) for magnetic and nonmagnetic field ECMM of Ti-6Al-4V titanium alloy.

No magnetic force Attraction magnetic force Repulsion magnetic force
S. No. Concentration of electrolyte (g/l) Ip (A) Ton (μs) DF MRR 10−3 (mm3/min) OC (mm) MRR 10−3 (mm3/min) OC (mm) MRR 10−3 (mm3/min) OC (mm)
1 15 1.20 300 0.5 0.59 0.32 0.66 0.25 0.72 0.21
2 15 1.20 300 0.5 0.59 0.32 0.66 0.25 0.73 0.21
3 15 1.20 300 0.5 0.59 0.32 0.66 0.26 0.73 0.22
4 15 1.35 400 0.6 0.97 0.35 1.48 0.31 2.22 0.28
5 15 1.35 400 0.6 0.97 0.35 1.47 0.31 2.22 0.28
6 15 1.35 400 0.6 0.96 0.35 1.47 0.31 2.21 0.28
7 15 1.50 500 0.7 0.72 0.33 0.88 0.28 1.46 0.24
8 15 1.50 500 0.7 0.72 0.33 0.88 0.28 1.46 0.24
9 15 1.50 500 0.7 0.72 0.33 0.87 0.28 1.47 0.24
10 22.5 1.20 400 0.7 0.60 0.43 0.68 0.39 0.78 0.34
11 22.5 1.20 400 0.7 0.59 0.43 0.68 0.39 0.79 0.35
12 22.5 1.20 400 0.7 0.59 0.43 0.68 0.39 0.79 0.34
13 22.5 1.35 500 0.5 0.72 0.32 0.89 0.27 1.50 0.23
14 22.5 1.35 500 0.5 0.73 0.32 0.87 0.27 1.52 0.24
15 22.5 1.35 500 0.5 0.73 0.32 0.89 0.26 1.51 0.23
16 22.5 1.50 300 0.6 0.62 0.30 0.72 0.24 0.85 0.22
17 22.5 1.50 300 0.6 0.62 0.30 0.72 0.24 0.85 0.22
18 22.5 1.50 300 0.6 0.62 0.29 0.72 0.24 0.84 0.22
19 30 1.20 500 0.6 0.76 0.34 0.97 0.29 1.60 0.26
20 30 1.20 500 0.6 0.76 0.34 0.95 0.29 1.57 0.26
21 30 1.20 500 0.6 0.77 0.34 0.96 0.28 1.59 0.26
22 30 1.35 300 0.7 0.64 0.37 0.78 0.34 1.00 0.30
23 30 1.35 300 0.7 0.64 0.37 0.78 0.34 0.99 0.30
24 30 1.35 300 0.7 0.65 0.37 0.78 0.34 0.99 0.30
25 30 1.50 400 0.5 0.62 0.35 0.70 0.31 0.82 0.26
26 30 1.50 400 0.5 0.63 0.35 0.73 0.31 0.84 0.26
27 30 1.50 400 0.5 0.62 0.35 0.71 0.33 0.83 0.27

Improvement in response factors in presence of magnetic field with respect to nonmagnetic field electrochemical micromachined Ti-6Al-4V.

% Increase in MRR % Decrease in OC
Concentration of electrolyte (g/l) Ip(A) Ton (μs) DF Attraction Repulsion Concentration of electrolyte (g/l) Ip(A) Ton (μs)
15 1.20 300 0.5 12.09 23.51 15 1.20 300
15 1.20 300 0.5 11.91 23.74 15 1.20 300
15 1.20 300 0.5 12.44 23.95 15 1.20 300
15 1.35 400 0.6 52.43 127.99 15 1.35 400
15 1.35 400 0.6 51.47 128.19 15 1.35 400
15 1.35 400 0.6 51.99 129.68 15 1.35 400
15 1.50 500 0.7 22.45 103.00 15 1.50 500
15 1.50 500 0.7 22.39 103.34 15 1.50 500
15 1.50 500 0.7 21.78 103.98 15 1.50 500
22.5 1.20 400 0.7 14.05 31.28 22.5 1.20 400
22.5 1.20 400 0.7 16.12 35.21 22.5 1.20 400
22.5 1.20 400 0.7 14.88 33.62 22.5 1.20 400
22.5 1.35 500 0.5 23.30 107.71 22.5 1.35 500
22.5 1.35 500 0.5 20.56 110.10 22.5 1.35 500
22.5 1.35 500 0.5 20.53 106.00 22.5 1.35 500
22.5 1.50 300 0.6 15.51 37.78 22.5 1.50 300
22.5 1.50 300 0.6 15.23 36.32 22.5 1.50 300
22.5 1.50 300 0.6 16.34 35.64 22.5 1.50 300
30 1.20 500 0.6 27.78 110.54 30 1.20 500
30 1.20 500 0.6 25.28 107.33 30 1.20 500
30 1.20 500 0.6 25.00 107.12 30 1.20 500
30 1.35 300 0.7 22.18 55.34 30 1.35 300
30 1.35 300 0.7 20.46 53.08 30 1.35 300
30 1.35 300 0.7 20.13 51.27 30 1.35 300
30 1.50 400 0.5 14.18 33.51 30 1.50 400
30 1.50 400 0.5 15.97 33.52 30 1.50 400
30 1.50 400 0.5 14.28 32.43 30 1.50 400
eISSN:
2083-134X
Język:
Angielski
Częstotliwość wydawania:
4 razy w roku
Dziedziny czasopisma:
Materials Sciences, other, Nanomaterials, Functional and Smart Materials, Materials Characterization and Properties