Open Access

The Influence of Silicon and Multinutrient Fertilizer On the Quality and Chemical Composition of Gazania Rigens ‘Kiss Yellow’, Salvia Farinacea ‘Fairy Queen’ and Verbena ‘Obsession Lilac’ Plants


Cite

Ali S., Farooq M.A., Yasmeen T., Hussain S., Arif M.S., Abbas F. et al. 2013. The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicology and Environmental Safety 89: 66-72. DOI: 10.1016/j.ecoenv.2012.11.015.10.1016/j.ecoenv.2012.11.01523260243Search in Google Scholar

Arnon D.I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology 24: 1-15. DOI: 10.1104/pp.24.1.1.10.1104/pp.24.1.143790516654194Search in Google Scholar

Barboni D., Anwar ul Haq M., Meunier J.-D., Keller C., Huc R. 2014. Si-accumulation in durum wheat and drought-stress: impact on the plant morphology and its leaf phytolith content. 9th International Meeting on Phytolith Research, Brussels. DOI: 10.13140/rg.2.1.3861.0081.Search in Google Scholar

Bayat H., Alirezaie M., Neamati H., Saadabad A.A. 2013. Effect of silicon on growth and ornamental traits of salt-stressed calendula (Calendula officinalis L.). Journal of Ornamental Plants 3(4): 207-214.Search in Google Scholar

Borowski E., Michałek S. 2009. The effect of placement and light conditions during foliar application of Insol U fertilizer on gas exchange, yield and the quality of spinach (Spinacia oleracea L.) Folia Horticulturae 21(1): 61-71. DOI: 10.2478/fhort-2013-0126.10.2478/fhort-2013-0126Search in Google Scholar

Brecht M.O., Datnoff L.E., Kucharek T.A., Nagata R.T. 2007. The influence of silicon on the components of resistance to gray leaf spot in St. Augustinegrass. Journal of Plant Nutrition 30: 1005-1021. DOI: 10.1080/01904160701394287.10.1080/01904160701394287Search in Google Scholar

Chen W., Yao X., Cai K., Chen J. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biological Trace Element Research 142(1): 67-76. DOI: 10.1007/s12011-010-8742-x.10.1007/s12011-010-8742-x20532668Search in Google Scholar

Cho R.H., Joung H.Y., Lim K-B., Kim K.S. 2013. Effect of calcium and silicate application on pathogenicity of Erwinia carotovora subsp. carotovora in Zantedeschia spp. Horticulture, Environment, and Biotechnology 54(4): 364-371. DOI: 10.1007/s13580-013-0059-1.10.1007/s13580-013-0059-1Search in Google Scholar

Dębicz R., Wróblewska K. 2011. The effect of silicon foliar application on the development of seasonal ornamental plants. Part I: Sanvitalia speciosa ‘Sunbini’, Verbena ‘Patio Blue’ and Portulaca umbraticola ‘Duna Red’. Acta Agrobotanica 64(4): 99-106. DOI: 10.5586/aa.2011.051.10.5586/aa.2011.051Search in Google Scholar

Dębicz R., Pawlikowska A., Wróblewska K., Bąbelewski P. 2016. Influence of foliar treatment with silicon contained in the Actisil Hydro Plus preparation on the growth, flowering and chemical composition of Gazania rigens (L.) Gaertn., Salvia farinacea Benth and Verbena hybrida Voss. Journal of Elemntology 21(3): 681-692. DOI: 10.5601/jelem.2015.20.2.909.10.5601/jelem.2015.20.2.909Search in Google Scholar

Fauteux F., Rémus-Borel W., Menzies J.G., Bélanger R.R. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249: 1-6. DOI: 10.1016/j.femsle.2005.06.034.10.1016/j.femsle.2005.06.03416006059Search in Google Scholar

Farshidi M., Abdolzadeh A., Sadeghipour H.R. 2012. Silicon nutrition alleviates physiological disorders imposed by salinity in hydroponically grown canola (Brassica napus L.) plants. Acta Physiologiae Plantarum 34(5): 1779-1788. DOI: 10.1007/s11738-012-0975-1.10.1007/s11738-012-0975-1Search in Google Scholar

Górecki R.S., Danielski-Busch W. 2009. Effect of silicate fertilizers on yielding of greenhouse cucumber (Cucumis sativus L.) in container cultivation. Journal of Elemntology 14(1): 71-78. DOI: 10.5601/jelem.2009.14.1.08.10.5601/jelem.2009.14.1.08Search in Google Scholar

Grzebisz W., Gaj R., Przygocka-Cyna K. 2010. Role of nutrients in build-up of plant resistance mechanisms to pathogens pressure. Progress in Plant Protection/ Postępy w Ochronie Roślin 50(2): 517-532. [in Polish with English abstract]Search in Google Scholar

Henriet C., Draye X., Oppitz I., Swennen R., Delvaux B. 2006. Effects, distribution and uptake of silicon in banana (Musa spp.) under controlled conditions. Plant and Soil 287: 359-374. DOI: 10.1007/s11104-006-9085-4.10.1007/s11104-006-9085-4Search in Google Scholar

Hogendorp B.K., Cloyd R.A., Swiader J.M. 2012. Determination of silicon concentration in some horticultural plants. HortScience 47(11): 1593-1595.10.21273/HORTSCI.47.11.1593Search in Google Scholar

Jamali B., Rahemi M. 2011. Carnation flowers senescence as influenced by nickel, cobalt and silicon. Journal of Biological and Environmental Sciences 5(15): 147-152.Search in Google Scholar

Jarosz Z. 2014. The effect of silicon application and type of medium on yielding and chemical composition of tomato. Acta Scientiarum Polonorum, Hortorum Cultus 13(4): 171-183.Search in Google Scholar

Kamenidou S., Cavins T.J., Marek S. 2008. Silicon supplements affect horticultural traits of greenhouseproduced ornamental sunflowers. HortScience 43(1): 236-239.10.21273/HORTSCI.43.1.236Search in Google Scholar

Kamenidou S., Cavins T.J., Marek S. 2010. Silicon supplements affects floricultural quality traits and elemental nutrient concentration of greenhouse produced gerbera. Scientia Horticulturae 123: 390-394. DOI: 10.1016/j.scienta.2009.09.008.10.1016/j.scienta.2009.09.008Search in Google Scholar

Kleiber T. 2014. The effect of choline-stabilized orthosilicic acid application under Mn excessive nutrition on yielding of hydroponically grown lettuce (Lactuca sativa L.). Aparatura Badawcza i Dydaktyczna 19(3): 219-226.Search in Google Scholar

Komosa A. 2012. Odżywianie dolistne w połączeniu z biostymulatorami wzrostu. In: Żywienie roślin ogrodniczych. Podstawy i perspektywy. PWRiL, Poznań. [in Polish]Search in Google Scholar

Korndörfer A.P., Grisoto E., Vendramim J.D. 2010. Introduction of insects plant resistance to the spittlebug Mahanarva fimbriolata Stål (Hemiptera: Cercopidae) in sugarcane by silicon application. Neotropical Entomology 40(3): 387-392. DOI: 10.1590/s1519-566x2011000300013.Search in Google Scholar

Ma J.F., Takahashi T. 2002. Silicon uptake and accumulation in plants. Chapter 6. In: Soil, Fertilizer, and Plant Silicon Research in Japan. Elsevier Science, The Netherlands, pp. 73-82.Search in Google Scholar

Ma J.F., Tamai K., Yamaji N., Mitani N., Konishi S., Katsuhara M. et al. 2006. A silicon transporter in rice. Nature 440: 688-691. DOI: 10.1038/nature04590.10.1038/nature0459016572174Search in Google Scholar

Ma J.F., Yamaji N. 2006. Silicon uptake and accumulation in higher plants. Trends in Plant Science 11(8): 392-397. DOI: 10.1016/j.tplants.2006.06.007.10.1016/j.tplants.2006.06.00716839801Search in Google Scholar

Mattson N.S., Leatherwood W.R. 2010. Potassium silicate drenches increase leaf silicon content and affect morphological traits of several floriculture crops grown in a peat-based substrate. HortScience 45(1): 43-47.10.21273/HORTSCI.45.1.43Search in Google Scholar

Mehrabanjoubani P., Abdolzadeh A., Sadeghipour H.R., Aghdasi M. 2014. Impacts of silicon nutrition on growth and nutrient status of rice plants grown under varying zinc regimes. Theoretical and Experimental Plant Physiology 27: 19-29. DOI: 10.1007/s40626-014-0028-9.10.1007/s40626-014-0028-9Search in Google Scholar

Mieszkalska K., Łukaszewska A. 2011. Effect of the silicon and phosphorus-containing fertilizer on geranium (Pelargonium hortorum L.H. Bailey) response to water stress. Acta Scientiarum Polonorum, Hortorum Cultus 10(3): 113-121.Search in Google Scholar

Mikiciuk G., Mikiciuk M. 2009. The influence of foliar application of potassium and silicon fertilizer on some physiological features of strawberry (Fragaria ananassa Duch.) variety Elvira. Annales UMCS, Sectio E - Agricultura 64(4): 19-27. DOI: 10.2478/v10081-009-0039-4. [in Polish with English abstract]10.2478/v10081-009-0039-4Search in Google Scholar

Mitani N., Ma J.F. 2005. Uptake system of silicon in different plant species. Journal of Experimental Botany 56(414): 1255-1261. DOI: 10.1093/jxb/eri121.10.1093/jxb/eri12115753109Search in Google Scholar

Prabagar S., Hodson M.J., Evans D.E. 2011. Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies (L.) Karst). Environmental and Experimental Botany 70: 266-276. DOI: 10.1016/j.envexpbot.2010.10.001.10.1016/j.envexpbot.2010.10.001Search in Google Scholar

Reezi S., Babalar M., Kalantari S. 2009. Silicon alleviates salt stress, decreases malondialdehyde content and affects petal color of salt-stressed cut rose (Rosa xhybrida L.) ‘Hot Lady’. African Journal of Biotechnology 8(8): 1502-1508. DOI: 10.5897/ajb09.180.Search in Google Scholar

Savvas D., Gizas G., Karras G., Lydakis-Simantiris N., Salahas G., Papadimitriou M., Tsouka N. 2007. Interactions between silicon and NaCl-salinity in a soilless culture of roses in greenhouse. European Journal of Horticultural Science 72(2): 73-79.Search in Google Scholar

Shetty R., Jensen B., Shetty N.P., Hansen M., Hansen C.W., Starkey K.R., Jørgensen H.J.L. 2012. Silicon induced resistance against powdery mildew of roses caused by Podosphaera pannosa. Plant Pathology 61: 120-131. DOI: 10.1111/j.1365-3059.2011.02493.x.10.1111/j.1365-3059.2011.02493.xSearch in Google Scholar

Sivanesan I., Jeong B.R. 2014. Silicon promotes adventitious shoot regeneration and enhances salinity tolerance of Ajuga multiflora Bunge by altering activity of antioxidant enzyme. Scientific World Journal, ID 521703, 10 p. DOI: 10.1155/2014/521703.10.1155/2014/521703391309024526904Search in Google Scholar

Sivanesan I., Son M.S., Song J.Y., Jeong B.R. 2013. Silicon supply through the subirrigation system affects growth of three chrysanthemum cultivars. Horticulture, Environment, and Biotechnology 54(1): 14-19. DOI: 10.1007/s13580-013-0120-0.10.1007/s13580-013-0120-0Search in Google Scholar

Soares J.D.R., Pasqual M., de Araujo A.G., de Castro E.M., Pereira F.J., Braga F.T. 2012. Leaf anatomy of orchids micropropagated with different silicon concentrations. Acta Scientiarum, Agronomy 34: 413-421. DOI: 10.4025/actasciagron.v34i4.15062.10.4025/actasciagron.v34i4.15062Search in Google Scholar

Soundararajan P., Sivanesan I., Jo E.H., Jeong B.R. 2013. Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Horticulture, Environment, and Biotechnology 54: 311-318. DOI: 10.1007/s13580-013-0118-7.10.1007/s13580-013-0118-7Search in Google Scholar

Soundararajan P., Sivanesan I., Jana S., Jeong B.R. 2014. Influence of silicon supplementation on the growth and tolerance to high temperature in Salvia splendens. Horticulture, Environment, and Biotechnology 55: 271-279. DOI: 10.1007/s13580-014-0023-8.10.1007/s13580-014-0023-8Search in Google Scholar

Tesfagiorgis H.B., Laing M.D. 2013. The effects of silicon level in nutrient solution on the uptake and distribution of silicon in zucchini and zinnia, and its interaction with the uptake of selected elements. African Journal of Biotechnology 12(14): 1617-1623. DOI: 10.5897/ajb2012.3038.Search in Google Scholar

Tripathi D.K., Singh V.P., Prasad S.M., Chauhan D.K., Dubey N.K., Rai A.K. 2015. Silicon-mediated alleviation of Cr(VI) toxicity in wheat seedlings as evidenced by chlorophyll florescence, laser induced breakdown spectroscopy and anatomical changes. Ecotoxicology and Environmental Safety 113: 133-144. DOI: 10.1016/j.ecoenv.2014.09.029.10.1016/j.ecoenv.2014.09.02925497769Search in Google Scholar

Whitted-Haag B., Kopsell D.E., Kopsell D.A., Rhykerd R.L. 2014. Foliar silicon and titanium applications influence growth and quality characteristics of annual bedding plants. Open Horticulture Journal 7: 6-15. DOI: 10.2174/1874840601407010006.10.2174/1874840601407010006Search in Google Scholar

Wróblewska K., Dębicz R. 2011. The effect of silicon foliar application on the development of season ornamental plants. Part II: Argyranthemum frutescens ‘Blazer Rose’, Xerochrysum bracteatum ‘Gold’, Osteospermum ecklonis ‘Grande Pink Blush’ and Gaura lindheimeri ‘Corinas Choice’. Acta Agrobotanica 64(4): 107-114. DOI: 10.5586/aa.2011.052.10.5586/aa.2011.052Search in Google Scholar

Yin L., Wang S., Li J., Tanaka K., Oka M. 2013. Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiologiae Plantarum 35: 3099-3107. DOI: 10.1007/s11738-013-1343-5.10.1007/s11738-013-1343-5Search in Google Scholar

Zhao D., Hao Z., Tao J., Han Ch. 2012. Silicon application enhances the mechanical strength of inflorescence stem in herbaceous peony (Paeonia lactiflora Pall.). Scientia Horticulturae 151: 165-172. DOI: 10.1016/j.scienta.2012.12.013.10.1016/j.scienta.2012.12.013Search in Google Scholar

Zhong J.-J., Seki T., Kinoshita S.-I., Yoshida T. 1992. Effects of surfactants on cell growth and pigment production in suspension cultures of Perilla frutescens. World Journal of Microbiology and Biotechnology 8: 106-109. DOI: 10.1007/BF01195826.10.1007/BF0119582624425388Search in Google Scholar

eISSN:
2300-5009
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, Biotechnology, Plant Science, Ecology, other