Open Access

Pharmacogenetics and Antipsychotic Treatment Response/ Фармакогенетски Тестирања И Одговор Кон Третман Со Антипсихотоци


Cite

1 Gasteira, A., Barros. F., Martin, A., et al. Pharmacogenetic studies on antipsychotic treatment. Current status and perspectives. Actas Esp Psiquiate. 2010; 38(5): 301-16.Search in Google Scholar

2. Murray CJL, Lopez AD. The Global Burden Disease: A Comprehensive Assessment of Mortality and Disability from Diseases, Injuries and Risk Factors in 1999 and Projected to 20120. Cambridge, MAA, Harvard University Press, 1996.Search in Google Scholar

3. Citrome L. Interpreting and Applying the CATIE Results: With CATIE, context is key, when sorting out Phases 1, 1A, 1B, 2E, and 2T. Psychiatry (Edgmont). 2007; 4(10): 23-29.Search in Google Scholar

4. Johansen E, Jorgensen A.H. Effectiveness of second generation antipsychotics. A systemic review of randomized trials. BMC Psychiatry. 2008; 8: 31.10.1186/1471-244X-8-31238645718439263Search in Google Scholar

5. Arranz JM, Perez V, Gutierrez B, Hervas A, Pharmacogenetic Applications of Pharmacogenomic Approaches in Schizophrenia. Curr Genet Med Rep. 2013; 1: 58-64.10.1007/s40142-012-0006-ySearch in Google Scholar

6. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO, et al. Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) Investigators. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med. 2005; 353(12): 1209-23.10.1056/NEJMoa05168816172203Search in Google Scholar

7. Fervaha G, Agid O, Takeuchi H, Foussias G, Remington G. Effect of antipsychotic medication on overall life satisfaction among individuals with chronic schizophrenia: findings from the NIMH CATIE study. Eur Neuropsychopharmacol. 2014; 24(7): 1078-85.10.1016/j.euroneuro.2014.03.00124726579Search in Google Scholar

8. Cacabelos R, Cacabelos P, Aliev G. Genomics of schizophrenia and pharmacogenomics of antipsychotic drugs. Open Journal of Psychiatry. 2013; 3: 46-139.9.10.4236/ojpsych.2013.31008Search in Google Scholar

9. Xie HG, Kim RB, Wood AJ and Stein CM. Molecular basis of ethnic differences in drug disposition and response. Annual Reviews, Pharmacology and Toxicology. 2001; 41: 815-850.10.1146/annurev.pharmtox.41.1.81511264478Search in Google Scholar

10. Nakajima M, Yokoi T, Mizutani M, et al. Genetic polymorphism in the 5'-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo). 1999; 125: 803- 808.10.1093/oxfordjournals.jbchem.a02235210101295Search in Google Scholar

11. Chida M, Yokoi T, Fukui T, et al. Detection of three genetic polymorphisms in the 5'-flanking region and intron 1 of human CYP1A2 in the Japanese population. Jpn J Cancer Res. 1999; 90: 899-902.10.1111/j.1349-7006.1999.tb00832.x592616510551315Search in Google Scholar

12. Sachse C, Brockmoller J, Bauer S, and Roots I. Functional significance of a C-->A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol. 1999; 47: 445-449.10.1046/j.1365-2125.1999.00898.x201423310233211Search in Google Scholar

13. Kootstra-Ros JE, Smallegoor W, and van der Weide J. The cytochrome P450 CYP1A2 genetic polymorphisms *1F and *1D do not affect clozapine clearance in a group of schizophrenic patients. Ann Clin Biochem. 2005; 42: 216-219.10.1258/000456305385779815949157Search in Google Scholar

14. Aklillu E, Carrillo JA, Makonnen E, et al. Genetic polymorphism of CYP1A2 in Ethiopians affecting induction and expression: characterization of novel haplotypes with single-nucleotide polymorphisms in intron 1. Mol Pharmacol. 2003; 64: 659-669.10.1124/mol.64.3.659Search in Google Scholar

15. Van der Weide J, Steijns LS, van Weelden, MJ. The effect of smoking and cytochrome P450 CYP1A2 genetic polymorphism on clozapine clearance and dose requirement. Pharmacogenetics. 2003; 13: 169-72.10.1097/00008571-200303000-00006Search in Google Scholar

16. Arranz JM and Kapur S. Pharmacogenetics in Psychiatry: Are we ready for widespread clinical use? Schizophrenia Bulletin. 2008; 6 34.: 1130-44.10.1093/schbul/sbn114Search in Google Scholar

17. Mahgoub A, Idle JR, Dring DG, Polymorphic hydroxylation of debrisoquine in man. Lancet. 1977; 2: 584-586.Search in Google Scholar

18. Tucker GT, Silias JH, Iyun AO, Lennard MS, Smith AJ. Polymorphic hydroxylation of debrisoquine. Lancet. 1977; 2: 718.10.1016/S0140-6736(77)90527-XSearch in Google Scholar

19. Kirchheiner J, Nickcen K, Bauer M, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to phenotype of drug response. Mol Psychiatry. 2004; 9: 442-473.10.1038/sj.mp.4001494Search in Google Scholar

20. Igelman-Sundberg M. Genetic polimorphisms of cytochrome P4502D6 (CYP2D6): clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics J. 2005; 5: 6-13.10.1038/sj.tpj.6500285Search in Google Scholar

21. Agundez, J., Ledesma, M., Ladero, J et al., Prevalence of CYP2D6 gene duplication and repercussion on oxidative phenotype in a white population. Clinical Pharmacol Ther. 1994; 57: 265-269.10.1016/0009-9236(95)90151-5Search in Google Scholar

22. de Leon J. The AmpliChip CYP450 Test: personalized medicine has arrived in psychiatry. Expert Rev Mol Diagn. 2006; 6: 277-286.10.1586/14737159.6.3.27716706732Search in Google Scholar

23. Vandel P, Haffen E, Vandel S, et al. Drug extrapyramidal side effects. CYP2D6 genotypes and phenotypes. Eur J Clin Pharmacol. 1999; 55(9): 659-665.10.1007/s00228005068910638395Search in Google Scholar

24. Jaanson P, Marandi T, Kiivet RA, et al. Maintenance therapy with zuclopentixol decanoate: association between plasma concentrations, neurological side effects and CYP2D6. Psychopharmacology (Berl). 2002; 162(1): 67-73.10.1007/s00213-002-1059-512107620Search in Google Scholar

25. Schillevoort I, de Boer A, van der Weide J, Steijns LS, et al. Antipsychotic-induced extrapyramidal syndromes and cytochrome P450 2D6 genotype: a casecontrol study. Pharmacogenetics. 2002; 12(3): 235-40.10.1097/00008571-200204000-0000811927839Search in Google Scholar

26. Bork J, Rogers T, Wedlund P, de Leon J. A pilot study of risperidone metabolism: the role of cytochrome P450 2D6 ultrarapid metabolizer (letter). J. Clin Psychiatry. 1999; 60: 469-76.10.4088/JCP.v60n0709Search in Google Scholar

27. De Leon J, Susce MT, Pan RM, Fairchild M, Koch W, Wedlund PJ. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry. 2005; 66: 15-27.10.4088/JCP.v66n0103Search in Google Scholar

28. Kato, D., Kawanishi, C., Kishida, I et al., Effects of CYP2D6 polymorphisms on neuroleptic malignant syndrome. Eur. J. Clin Pharmacol. 63; 11: 991-996 2007.10.1007/s00228-007-0355-817701031Search in Google Scholar

29. Schuetz JD, Beach DL, and Guzelian PS. (1994) Selective expression of cytochrome P-450 CYP3AmRNAs in embryonic and adult human liver. Pharmacogenetics. 1994; 4: 11-20.10.1097/00008571-199402000-000028004129Search in Google Scholar

30. Lacroix D, Sonnier M, Moncion A, Cheron G, and Cresteil T. Expression of CYP3A in the human liver: evidence that the shift between CYP3A7 and CYP3A4 occurs immediately after birth. Eur J Biochem. 1997; 247: 625-634.10.1111/j.1432-1033.1997.00625.x9266706Search in Google Scholar

31. Koch I, Weil R, Wolbold R, et al. Interindividual variability and tissue-specificity I the expression of cytochrome P450 3A mRNA. Drug Metab Dispos. 2002; 30: 383-391.10.1124/dmd.30.10.110812228187Search in Google Scholar

32. Dai D, Tang J, Rose R, et al., Identification of variants of CYP3A4 and characterization of their abilities to metabolize testosterone and chloropyrifos. J. Pharmacolo Exp Ther. 2001; 299: 825-831.Search in Google Scholar

33. Kuehl P, Zhang J, Lin Y, et al. Sequence diversity in CYP3A4 protomers and characterization of genetic basis of polymorphic CYP3A5 expression. Net Genet. 2001; 27 (4): 383-391.10.1038/8688211279519Search in Google Scholar

34. van Schaik RH, de Wildt SN, van Iperen NM, et al. CYP3A4-Vpolymorphism detection by PCRrestriction fragment length polymorphism analysis and its allelic frequency among 199 Dutch Caucasians. Clin Chem. 2000; 46: 1834-6.10.1093/clinchem/46.11.1834Search in Google Scholar

35. van Schaik RH, de Wildt SN, Brosens R, et al. The CYP3A4*3allele: is it really rare? Clin Chem. 2001; 47: 1104-6.Search in Google Scholar

36. Wang A, Yu BN, Luo CH, et al. Ile118Val genetic polymorphism of CYP3A4 and its effects on lipidlowering efficacy of simvastatin in Chinese hyperlipidemic patients. Eur J Clin Pharmacol. 2005; 60: 843-8.10.1007/s00228-004-0848-715650881Search in Google Scholar

37. van Schaik RH, van der Heiden IP, van den Anker JN, and Lindemans J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem. 2002; 48: 1668-71.10.1093/clinchem/48.10.1668Search in Google Scholar

38. Ambudkar SV, Dey S, Hrycyna CA, Ramachandra M, Pastan I,Gottesman MM. Biochemical, cellular, and pharmacological aspects of the multidrug transporter. Annu Rev Pharmacol Toxicol. 1999; 39: 361-98.10.1146/annurev.pharmtox.39.1.361Search in Google Scholar

39. Benet LZ, Izumi T, Zhang Y, Silverman JA, Wacher VJ. Intestinal MDR transport proteins and P-450 enzymes as barriers to oral drug delivery. Control Release. 1999; 62: 25-31.10.1016/S0168-3659(99)00034-6Search in Google Scholar

40. Hoffmeyer S, Burk O, von Richter O, Arnold HP, Brockmöller J, Johne A, et al. Functional polymorphism of the human multidrug-resistance gene: multiple sequence variations and correlations of one allele with P-glycoprotein expression and activity in vivo. Proc Natl Acad Sci U S A. 2000; 97: 3473-3478.10.1073/pnas.97.7.34731626410716719Search in Google Scholar

41. Nakamura T, Sakaeda T, Horinouchi M, Tamura T, Aoyama N, Schirakawa T, et al. Effect of the mutation (C3435T) et exon 26 of the MDR1 gene on expression level of MDR1 messenger ribonucleic acid in duodenal enterocytes of healthy Japanese subjects. Clin Pharmacol Ther. 2002; 71: 297-303.10.1067/mcp.2002.12205511956513Search in Google Scholar

42. Nikisch G, Eap CB and Baumann P. Citalopram enantiomers in plasma and cerebrospinal fluid of ABCB1 genotyped depressive patients and clinical response: a pilot study. Pharmacol Res. 2008; 58: 344-347.10.1016/j.phrs.2008.09.01018940259Search in Google Scholar

43. Uhr M, Grauer MT, Yassouridis A and Ebinger M. Blood-brain barrier penetration and pharmacokinetics of amitriptyline and its metabolites in p-glycoprotein (abcb1ab) knock-out mice and controls. J Psychiatr Res. 2007; 41: 179-188.10.1016/j.jpsychires.2005.10.00516387324Search in Google Scholar

44. Gex-Fabry M, Eap CB, Oneda B, Gervasoni N, Aubry JM, Bondolfi G, et al. CYP2D6 and ABCB1 genetic variability: Influence on paroxetine plasma level and therapeutic response. Ther Drug Monit. 2008; 30: 474-482.10.1097/FTD.0b013e31817d6f5d18641553Search in Google Scholar

45. Loscher W and Potschka H. Role of multidrug transporters in pharmacoresistance to antiepileptic drugs. J Pharmacol Exp Ther. 2002; 301: 7-14.10.1124/jpet.301.1.711907151Search in Google Scholar

46. Moons T, de Roo M, Claes S and Dom G. Relationship between P-glycoprotein and second generation antipsychotics. Pharmacogenomics. 2011; 12(8): 1193-211.10.2217/pgs.11.5521843066Search in Google Scholar

47. Nakagami T, Yasui-Furukori N, Saito M, et al. Effect of verapamil on pharmacokinetics and pharmacodynamics of risperidone: in vivo evidence of involvement of P-glycoprotein in risperidone disposition. Clin Pharmacol Ther. 2005; 78: 43-51.10.1016/j.clpt.2005.03.00916003291Search in Google Scholar

48. Wang D, Johnson AD, Papp AC, Kroetz DE and Sade´e W. Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics. 2005; 15: 693-704.10.1097/01.fpc.0000178311.02878.83Search in Google Scholar

49. Verstuyft C, Schwab M, Schaeffeler E, et al. Digoxin pharmacokinetics and MDR1 genetic polymorphisms. Eur J Clin Pharmacol. 2003; 58: 809-812. 10.1007/s00228-003-0567-512698307Search in Google Scholar

50. Mickley LA, Lee JS, Weng Z, et al. Genetic polymorphism in MDR-1: a tool for examining allelic expression in normal cells, unselected and drug-selected cell lines, and human tumors. Blood. 1998; 91: 1749-1756.10.1182/blood.V91.5.1749Search in Google Scholar

51. Morita Y, Sakaeda T, Horinouchi M, et al. MDR1 genotype-related duodenal absorption rate of digoxin in healthy Japanese subjects. Pharmacol Res. 2003; 20: 552-526.10.1023/A:1023282312757Search in Google Scholar

52. Horinouchi M, Sakaeda T, Nakamura T, et al. Significant genetic linkage of MDR1 polymorphisms at positions 3435 and 2677: functional relevance to pharmacokinetics of digoxin. Pharmacol Res. 2002; 19: 1581-1585.10.1023/A:1020433422259Search in Google Scholar

53. Johne A, Kopke K, Gerloff T, et al. Modulation of steady-state kinetics of digoxin by haplotypes of the P-glycoprotein MDR1 gene. Clin Pharmacol Ther. 2002; 72: 584-594.10.1067/mcp.2002.12919612426522Search in Google Scholar

54. Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther. 2001; 69: 169-174.10.1067/mcp.2001.11416411240981Search in Google Scholar

55. Kimchi-Sarfaty C, Oh JM, Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, et al. A ‘‘silent’’ polymorphism in the MDR1 gene changes substrate specificity. Science. 2007; 315: 525-528.10.1126/science.113530817185560Search in Google Scholar

56. Xiang Q, Zhao X, Zhou Y, Duan JL, Cui YM. Effect of CYP2D6, CYP3A5, and MDR1genetic polymorphisms on the pharmacokinetics of risperidone and its active moiety. J. Clin. Pharmacol. 2010; 50(6): 659-666.Search in Google Scholar

57. Jovanović N, et al. The role of CYP2D6 and ABCB1 pharmacogenetics in drug-naïve patients with firstepisode schizophrenia treated with risperidone. Eur J Clin Pharmacol. 2010; 66: 1109.10.1007/s00228-010-0850-120563569Search in Google Scholar

58. Shinkai T, De Luca V, Utsunomiya K, et al. Functional polymorphism of the human multidrug resistance gene (MDR1) and polydipsia-hyponatremia in schizophrenia. Neuromolecular Med. 2008; 10(4): 362-367.10.1007/s12017-008-8041-218543120Search in Google Scholar

59. Xing Q, Gao R, Li H, et al. Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics. 2006; 7(7): 987-993 (2006).10.2217/14622416.7.7.98717054409Search in Google Scholar

60. Suzuki, Y., Tsuneyama, N., Sugai, T., Watanabe, J., Ono, S., Saito, M., Someya, T. Impact of the ABCB1 gene polymorphism on plasma 9-hydroxyrisperidone and active moiety levels in Japanese patients with schizophrenia. J Clin Pharmacol. 2013 Jun; 33(3): 411-4.10.1097/JCP.0b013e31828ecd5223609388Search in Google Scholar

61. Skogh, E., Sjodin, I., Josefsson, M., Dahl, M.L. High correlation between serum and cerebrospinal fluid olanzapine concentrations in patients with schizophrenia or schizoaffective disorder medicating with oral olanzapine as the only antipsychotic drug. Clin Psychopharmaciol. 2011; Feb; 31(1): 4-9.10.1097/JCP.0b013e318204d9e221192135Search in Google Scholar

62. Lin, Y.C., Ellingrod, V.L., Bishop, J.R., Miller, D.D. The relationship between P-glycoprotein (PGP) polymorphisms and response to olanzapine treatment in schizophrenia. Ther Drug Monit. 2006; 28(5): 668-72.10.1097/01.ftd.0000246761.82377.a617038883Search in Google Scholar

63. Bozina N, Kuzman MR, Medved V, Jovanovic N, Sertic J, Hotujac L. Associations between MDR1 gene polymorphisms and schizophrenia and therapeutic response to olanzapine in female schizophrenic patients. J Psychiatr Res. 2008; 42(2): 89-97.10.1016/j.jpsychires.2006.10.00217113599Search in Google Scholar

64. Kuzman, M.R., Medvedev, V., Bozina, N., Grubisin, J., Jovanovic, N., Sertic, J. Association study of MDR1 and 5-HT2C genetic polymorphisms and antipsychotic- induced metabolic disturbances in female patients with schizophrenia. Pharmacogenomics J. 2011 Feb; 11(1): 35-44.10.1038/tpj.2010.720195292Search in Google Scholar

65. Nyberg S, Eriksson B, Oxenstierna G, Halldin C, and Farde L. Suggested minimal effective dose of risperidone based on PET measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry. 1999; 156: 869-75.10.1176/ajp.156.6.86910360125Search in Google Scholar

66. 4-25 25. Zai CC, et al. Meta-analysis of two dopamine D2 receptor gene polymorphisms with tardive dyskinesia in schizophrenia patients. Mol Psychiatry. 2007; 12: 794.10.1038/sj.mp.400202317767146Search in Google Scholar

67. Lencz T, Robinson DG, Napolitano B, et al. DRD2 promoter region variation predicts antipsychoticinduced weight gain in first episode schizophrenia. Pharmacogenet. Genomics. 2010; 20(9): 569-572.Search in Google Scholar

68. Yasui-Furukori N, Tsuchimine S, Saito M, et al. Comparing the influence of dopamine D2 polymorphisms and plasma drug concentrations on the clinical response to risperidone. J. Clin. Psychopharmacol. 2011; 31(5): 633-637.10.1097/JCP.0b013e31822c09a721869689Search in Google Scholar

69. Kishida I, Kawanishi C, Furano T, Kato D, Ischigami TM and Kosaka K. Association in Japanese patients between neuroleptic malignant syndrome and functional polymorphisms of dopamine D (2) receptor gene. Mol Psyhiatry. 2004; 9(3): 293-8.10.1038/sj.mp.4001422Search in Google Scholar

70. Arinami T, Gao M, Hamaguchi H, Toru M, A functional polymorphism in the promoter region of dopamine D2 receptor gene in association with schizophrenia. Hum Mol Genet. 1997; 6: 577-582.10.1093/hmg/6.4.577Search in Google Scholar

71. Lane HY, Lee CC, Change YC, et al. Effects of dopamine D2 receptor Ser311Cys polymorphism and clinical factors on risperidone efficacy for positive and negative symptoms and social function. Int J Neuropsychopharmacol. 2004; 7: 461-470.10.1017/S1461145704004389Search in Google Scholar

72. Hedenmalm K, Guzey C, Dahl ML, Yue QY, and Spigset O. Risk factors for extrapyramidal symptoms during treatment with selective serotonin reuptake inhibitors, including cytochrome P-450 enzyme, and serotonin and dopamine transporter and receptor polymorphisms. J Clin Psychopharmacol. 2006; 26: 192-7.10.1097/01.jcp.0000203200.96205.34Search in Google Scholar

73. Guzey C, Scordo MG, Spina E, Landsem VM, and Spigset O. Antipsychotic-induced extrapyramidal symptoms in patients with schizophrenia: associations with dopamine and serotonin receptor and tran sporter polymorphisms. Eur J Clin Pharmacol. 2007; 63: 233-41.10.1007/s00228-006-0234-8Search in Google Scholar

74. Furukori N. Clinical pharmacogenetics in the treatment of schizophrenia. Nihon Shinkei Seishin Yakurigaku Zasshi. 2010; 30(2): 65-69.Search in Google Scholar

75. Jonsson EG, Nothen MM, Grunhage F, et al. Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers. Mol Psychiatry. 1999; 4: 290-6.10.1038/sj.mp.4000532Search in Google Scholar

76. Thompson J, Thomas N, Singleton A, et al. D2 dopamine receptor gene (DRD2) Taq1 A polymorphism: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele. Pharmacogenetics. 1997; 7: 479-84.10.1097/00008571-199712000-00006Search in Google Scholar

77. Xing Q, Qian X, Li H, et al. The relationship between the therapeutic response to risperidone and the dopamine D2 receptor polymorphism in Chinese schizophrenia patients. Int J Neuropsychopharmacol. 2007; 10(5): 631-7.10.1017/S146114570600719XSearch in Google Scholar

78. Lencz T, Robinson DG, Xu K, et al. DRD2 promoter region variation as a predictor of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am J Psychiatry. 2006; 163(3): 529-31.10.1176/appi.ajp.163.3.529Search in Google Scholar

79. Suzuki M, Hurd YL, Sokoloff P, Schwartz JC, and Sedvall G. D3 dopamine receptor mRNA is widely expressed in the human brain. Brain Res. 1998; 779(1-2): 58-74.10.1016/S0006-8993(97)01078-0Search in Google Scholar

80. Bakker PR, van Harten PN, Van Os J. Antipsychoticinduced tardive dyskinesia and the Ser9Gly polymorphism in the DRD3 gene: a meta-analysis. Schizophr Res. 2006; 83: 185-92.10.1016/j.schres.2006.01.010Search in Google Scholar

81. Lerer, B., Segman, R. H., Fangerau, H, et al. Pharmacogenetics of tardive dyskinesia. Combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology. 2002; 27: 105-119.10.1016/S0893-133X(02)00293-2Search in Google Scholar

82. Zai, C.C., Tiwari, A.K., Basile, V., De Luca, V., Muller, H.Y., Liberman, J.A, et al. Association study of tardive dyskinesia and five DRD4 polymorphisms in schizophrenia patients. Journal of Pharmacogenomics. 2009; 9: 168-174.10.1038/tpj.2009.2Search in Google Scholar

83. Wang L, Fang C, Zhang A, et al. The 1019 C/G polymorphism of the 5-HT(1)A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J. Psychopharmacol. 2008; 22(8): 904-909.10.1177/0269881107081522Search in Google Scholar

84. Mössner R, Schuhmacher A, Kühn KU, et al. Functional serotonin 1A receptor variant influences treatment response to atypical antipsychotics in schizophrenia. Pharmacogenet. Genomics. 2009; 19(1): 91-94.Search in Google Scholar

85. Pompeiano M, Palacios JM, and Mengod G. Distribution of the serotonin 5-HT2 receptor family mRNAs: comparison between 5-HT2A and 5-HT2C receptors. Brain Res Mol Brain Res. 1994; 23: 163-78.10.1016/0169-328X(94)90223-2Search in Google Scholar

86. Roth BL, Sheffl er DJ, Kroeze WK. Magic shotguns versus magic bullets: selectively non-selective drugs for mood disorders and schizophrenia. Nat Rev Drug Discov. 2004; 3(4): 353-9.10.1038/nrd1346Search in Google Scholar

87. Parsons MJ, D'Souza UM, Arranz MJ, Kerwin RW, and Makoff AJ. The -1438A/G polymorphism in the 5-hydroxytryptamine type 2A receptor gene affects promoter activity. Biol Psychiatry. 2004; 56: 406-1010.1016/j.biopsych.2004.06.020Search in Google Scholar

88. Spurlock G, Heils A, Holmans P, et al. A family based association study of T102C polymorphism in 5HT2A and schizophrenia plus identification of new polymorphisms in the promoter. Mol Psychiatry. 1998; 3: 42-9.10.1038/sj.mp.4000342Search in Google Scholar

89. Ozaki N, Manji H, Lubierman V, et al. A naturally occurring amino acid substitution of the human serotonin 5-HT2A receptor influences amplitude and timing of intracellular calcium mobilization. J Neurochem. 1997; 68: 2186-93.10.1046/j.1471-4159.1997.68052186.xSearch in Google Scholar

90. Arranz MJ, Munro J, Sham P, et al. Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res. 1998; 32: 93-99.10.1016/S0920-9964(98)00032-2Search in Google Scholar

91. Kang RH, Choi MJ, Paik JW, Hahn SW, Lee MS. Effect of serotonin receptor 2A gene polymorphism on mirtazapine response in major depression. Int J Psychiatry Med. 2007; 37: 315-329.10.2190/PM.37.3.hSearch in Google Scholar

92. Arranz MJ, Collier D, Sodhi M, et al. Association between clozapine response and allelic variation in 5- HT2A receptor gene. Lancet. 1995; 346: 281-2.10.1016/S0140-6736(95)92168-0Search in Google Scholar

93. Lattuada E, Cavallaro R, Serretti A, Lorenzi C, and Smeraldi E. Tardive dyskinesia and DRD2, DRD3, DRD4, 5-HT2A variants in schizophrenia: an association study with repeated assessment. Int J Neuropsychopharmacol. 2004; 7(4): 489-93.10.1017/S1461145704004614Search in Google Scholar

94. Polesskaya OO, Aston C, Sokolov BP. Allele C-specific methylation of the 5-HT2A receptor gene: evidence for correlation with its expression and expression of DNA methylase DNMT1. J Neurosci Res. 2006; 83(3): 362-73.10.1002/jnr.20732Search in Google Scholar

95. Clemett DA, Punhani T, Duxon MS, Blackburn TP, and Fone KC. Immunohistochemical localisation of the 5-HT2C receptor protein in the rat CNS. Neuropharmacology. 2000; 39: 123-32.10.1016/S0028-3908(99)00086-6Search in Google Scholar

96. Marazziti D, Rossi A, Giannaccini G, et al. Distribution and characterization of 3H.mesulergine binding in human brain postmortem. Eur Neuropsychopharmacol. 1999; 10: 21-6.10.1016/S0924-977X(99)00045-0Search in Google Scholar

97. Yuan X, Yamada K, Ishiyama-Shigemoto S, Koyama W, and Nonaka K. Identification of polymorphic loci in the promoter region of the serotonin 5- HT2C receptor gene and their association with obesity and type II diabetes. Diabetologia. 2000; 43: 373-6.10.1007/s001250050056Search in Google Scholar

98. Hill MJ and Reynolds GP. 5-HT(2C) receptor gene polymorphisms associated with antipsychotic drug action alter promoter activity. Brain Res. 2007. 10.1016/j.brainres.2007.02.038Search in Google Scholar

99. Reynolds GP, Zhang ZJ, and Zhang XB. Association of antipsychotic drug-induced weight gain with a 5- HT2C receptor gene polymorphism. Lancet. 2002; 359: 2086-7.10.1016/S0140-6736(02)08913-4Search in Google Scholar

100. De Luca V, Mueller DJ, de Bartolomeis A, and Kennedy JL. Association of the HTR2C gene and antipsychotic induced weight gain: a meta-analysis. Int J Neuropsychopharmacol. 2007; 10: 697-704.10.1017/S146114570700754717291373Search in Google Scholar

101. Ryu S, Cho EY, Park T, et al. -759 C/T polymorphism of 5-HT2C receptor gene and early phase weight gain associated with antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry. 2007; 31: 673-7.10.1016/j.pnpbp.2006.12.02117275977Search in Google Scholar

102. Templeman LA, Reynolds GP, Arranz B, and San L. Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first episode psychosis. Pharmacogenet Genomics. 2005; 15: 195-200.10.1097/01213011-200504000-0000215864111Search in Google Scholar

103. Wallace JMT, Zai CC, Muller JC. Role of 5-HT2C receptor gene variant in antipsychotic-induced weight gain. Pharmacogenetics and Personalized Medicine. 2011; 4: 83-93.Search in Google Scholar

104. McCarthy S, Mottagui-Tabar S, Mizuno Y, et al. Complex HTR2C linkage disequilibrium and promoter associations with body mass index and serum leptin. Hum Genet. 2005; 117: 545-57.10.1007/s00439-005-1328-616021472Search in Google Scholar

105. Zhang ZJ, Zhang XB, Sha WW, Zhang XB, and Reynolds GP. Association of a polymorphism in the promoter region of the serotonin5-HT2C receptor gene with tardive dyskinesia in patients with schizophrenia. Mol Psychiatry. 2002; 7: 670-1.10.1038/sj.mp.400105212192608Search in Google Scholar

106. Okada M, Northup JK, Ozaki N, et al. Modification of human 5- HT(2C) receptor function by Cys23Ser, an abundant, naturally occurring amino-acid substitution. Mol Psychiatry. 2004; 9: 55-64.10.1038/sj.mp.400135714699441Search in Google Scholar

107. Fentress HM, Grinde E, Mazurkiewicz JE, et al. Pharmacological properties of the Cys23Ser single nucleotide polymorphism in human 5-HT2C receptor isoforms. Pharmacogenomics J. 2005; 5: 244- 54.10.1038/sj.tpj.650031515912142Search in Google Scholar

108. Sodhi MS, Arranz MJ, Curtis D, et al. Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport. 1995; 7: 169-72.10.1097/00001756-199512000-00041Search in Google Scholar

109. Segman RH, Heresco-Levy U, Finkel B, et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berl). 2000; 152: 408-13.10.1007/s00213000052111140333Search in Google Scholar

110. Drago A, and Serretti A. Focus on HTR2C: a possible suggestion for genetic studies of complex disorders. Am J Med Geneti B Neuropsyhiatr Genet. 2009; 105B (5): 601-637.10.1002/ajmg.b.3086418802918Search in Google Scholar

111. Lane HY, Liu YC, Huang CL, et al. Risperidonerelated weight gain: genetic and nongenetic predictors. J. Clin. Psychopharmacol. 2006; 26(2), 128-134.Search in Google Scholar

112. Lane HY, Lin CC, Huang CH, Chang YC, Hsu SK, Chang WH. Risperidone response and 5-HT6 receptor gene variance: genetic association analysis with adjustment for nongenetic confounders. Schizophr. Res. 2004; 67(1), 63-70.Search in Google Scholar

114. Abi-Dargham A, Laruelle M, Aghajanian GK, Charney D, Cristal J. The role of serotonin in the pathophysiology and treatment of schizophrenia. J. Neuropsychiatr. Clin. Neuroscience. 1997; 9(1): 1-17.Search in Google Scholar

115. Mata I, Arranz MJ, Patiño A, et al. Serotonergic polymorphisms and psychotic disorders in populations from north Spain. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2004; 126B(1): 88-94.10.1002/ajmg.b.2015015048655Search in Google Scholar

116. Arranz MJ, de Leon J. Pharmacogenetics and pharmacogenomics of schizophrenia: a review of last decade of research. Mol. Psychiatry. 2007; 12(8): 707-747.Search in Google Scholar

117. Dolzan V, Serretti A, Mandelli L, Koprivsek J, Kastelic M, Plesnicar BK. Acute antipyschotic efficacy and side effects in schizophrenia: association with serotonin transporter promoter genotypes. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2008; 32(6): 1562-1566.Search in Google Scholar

118. Llerena A, Berecz R, Penes-Lledo E, and Ferinas H. Pharmacogenetics of clinical response to risperidone. Pharmacogenomics. 2013; 14(2): 177-194.10.2217/pgs.12.20123327578Search in Google Scholar

119. Liperoti R, Onder G, Landi F, et al. All-cause mortality associated with atypical and conventional antipsychotics among nursing home residents with dementia: a retrospective cohort study. J. Clin. Psychiatry. 2009; 70(10): 1340-1347.Search in Google Scholar

120. Wang L, Yu L, He G, et al. Response of risperidone treatment may be associated with polymorphisms of HTT gene in Chinese schizophrenia patients. Neuroscience Letters. 2004; 414: 1-4.10.1016/j.neulet.2006.09.01417287080Search in Google Scholar

121. Srivastava V, Varma PG, Prasad S, et al. Genetic susceptibility to tardive dyskinesia among schizophrenia subjects: IV. Role of dopaminergic pathway gene polymorphisms. Pharmacogenet Genomics. 2006; 16: 111-117.10.1097/01.fpc.0000184957.98150.0f16424823Search in Google Scholar

122. Weickert TW, Goldberg TE, Mishara A, et al. Catechol-Omethyltransferase val108/158met genotype predicts working memory response to antipsychotic medications. Biol Psychiatry. 2004; 56: 677-68210.1016/j.biopsych.2004.08.01215522252Search in Google Scholar

123. Yamanouchi Y, Iwata N, Suzuki T, Kitajima T, Ikeda M, Ozaki N. Effect of DRD2, 5-HT2A, and COMT genes on antipsychotic response to risperidone. Pharmacogenomics J. 2003; 3(6): 356-361.10.1038/sj.tpj.650021114610521Search in Google Scholar

124. Kang CY, Xu XF, Shi ZY, Yang JZ, Liu H, Xu HH. Interaction of catechol-Omethyltransferase (COMT) Val108/158 Met genotype and risperidone treatment in Chinese Han patients with schizophrenia. Psychiatry Res. 2010; 176(1): 94-95.10.1016/j.psychres.2009.02.00920053459Search in Google Scholar

125. Anttila S, Illi A, Kampman O, Mattila KM, Lehtimaki T, and Leinonen E. Interaction between NOTCH4 and catechol- O-methyltransferase geno types in schizophrenia patients with poor response to typical neuroleptics. Pharmacogenetics. 2004; 14: 303-307.10.1097/00008571-200405000-0000515115916Search in Google Scholar

126. Shoval G, and Weizman A. The possible role of neurotrophins in the pathogenesis and therapy of schizophrenia. Eur. Neuropsychopharmacol. 2005; 15(3); 319-329.10.1016/j.euroneuro.2004.12.00515820422Search in Google Scholar

127. Pröschel M, Saunders A, Roses AD, Müller CR. Dinucleotide repeat polymorphism at the human gene for brain-derived neurotrophic factor (BDNF). Hum. Mol. Genet. 1992; 1(5): 353.Search in Google Scholar

128. Cargill M, Altshuler D, Ireland J, et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes Nat. Genet. 1999; 22(3): 231-238.Search in Google Scholar

129. Kunugi H, Ueki A, Otsuka M, et al. A novel polymorphism of the brain-derived neurotrophic factor (BDNF) gene associated with late-onset Alzheimer’s disease. Mol. Psychiatry. 2001; 6(1): 83-86.Search in Google Scholar

130. Lenez T, Lipisky RH, DeRosse P, Burdick KE, Kane JM and Malhotra AK. Molecular differentiation of schizoactive disorder from schizophrenia using BDNF haplotypes. The British Journal of Psychiatry. 2009; 194: 313-318.10.1192/bjp.bp.108.050401266496919336781Search in Google Scholar

131. Nikolac Perkovic M, Nedic Erjavec G, Zivkovic M, Sagud M, Uzun S, Mihaljevic-Peles, et al. Association between the brain-derived neurotropic factor Val66Met polymorphism and therapeutic response to olanzapine in schizophrenia patients. Psychopharmacology (Berl). 2014; Epub ahead of print..10.1007/s00213-014-3515-424595507Search in Google Scholar

132. Szczepankiewicz A, Skibinska M, Czerski PM, et al. No association of the brain-derived neurotrophic factor (BDNF) gene C-270T polymorphism with schizophrenia. Schizophr. Res. 2005; 76(2-3): 187-193.10.1016/j.schres.2005.02.00615949651Search in Google Scholar

133. Xu M, Li S, Xing Q, et al. Genetic variants in the BDNF gene and therapeutic response to risperidone in schizophrenia patients: a pharmacogenetic study. Eur. J. Hum. Genet. 2010; 18(6): 707-712.Search in Google Scholar

134. Campbell DB, Ebert PJ, Skelly T, et al. Ethnic stratification of the association of RGS4 variants with antipsychotic treatment response in schizophrenia. Biol Psychiatry. 2008; 63: 32-41.10.1016/j.biopsych.2007.04.018219475817588543Search in Google Scholar

135. Greenbaum L, Smith RC, Rigbi A, et al. Further evidence for association of the RGS2 gene with antipsychotic-induced parkinsonism: protective role of a functional polymorphism in the 3’-untranslated region. Pharmacogenomics J. 2008; 8: 186-195.Search in Google Scholar

136. Greenbaum L, Strous RD, Kanyas K, et al. Association of the RGS2 gene with extrapyramidal symptoms induced by treatment with antipsychotic medication. Pharmacogenet Genomics. 2007; 17: 519-528.10.1097/FPC.0b013e32800ffbb417558307Search in Google Scholar

137. Lane HY, Liu YC, Huang CL, et al. RGS4 polymorphisms predict clinical manifestations and responses to risperidone treatment in patients with schizophrenia. J Clin Psychopharmacol. 2008; 28: 64-68. 10.1097/jcp.0b013e3181603f5a18204343Search in Google Scholar

eISSN:
0350-1914
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education