Cite

M. J. Ablowitz, A. Zeppetella. (1979), Explicit solutions of Fisher’s equation for a special wave speed, Bull. Math. Biol., 41, 835-840. 10.1016/S0092-8240(79)80020-8AblowitzM. J.ZeppetellaA.1979Explicit solutions of Fisher’s equation for a special wave speedBull. Math. Biol.4183584010.1016/S0092-8240(79)80020-8Open DOISearch in Google Scholar

P.M. Altrock, L.L. Liu, F. Michor. (2015), The mathematics of cancer: integrating quantitative models, Nat. Rev. Cancer, 15, 730-745. 10.1038/nrc402926597528AltrockP.M.LiuL.L.MichorF.2015The mathematics of cancer: integrating quantitative modelsNat. Rev. Cancer1573074510.1038/nrc402926597528Open DOISearch in Google Scholar

M. Badoual, C. Gerin, C. Deroulers, B. Grammaticos, J.-F. Llitjos, C. Oppenheim, P. Varlet, J. Pallud. (2014), Oedema-based model for diffuse low-grade gliomas: application to clinical cases under radiotherapy, Cell Prolif., 47, 369-380. 10.1111/cpr.1211424947764BadoualM.GerinC.DeroulersC.GrammaticosB.LlitjosJ.-F.OppenheimC.VarletP.PalludJ.2014Oedema-based model for diffuse low-grade gliomas: application to clinical cases under radiotherapyCell Prolif.4736938010.1111/cpr.12114649667724947764Open DOISearch in Google Scholar

A.L. Baldock, et al. (2014), Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomas, PLoS ONE, 9, e99057. 10.1371/journal.pone.0099057BaldockA.L.2014Patient-specific metrics of invasiveness reveal significant prognostic benefit of resection in a predictable subset of gliomasPLoS ONE9e9905710.1371/journal.pone.0099057421167025350742Open DOISearch in Google Scholar

J. Belmonte-Beitia. (2016), Existence of travelling wave solutions for a Fisher-Kolmogorov system with biomedical applications, Commun. Non. Sci. Num. Sim., 36, 14-20. 10.1016/j.cnsns.2015.11.016Belmonte-BeitiaJ.2016Existence of travelling wave solutions for a Fisher-Kolmogorov system with biomedical applicationsCommun. Non. Sci. Num. Sim.36142010.1016/j.cnsns.2015.11.016Open DOISearch in Google Scholar

J. Belmonte-Beitia, G. F. Calvo, V. M. Pérez-García. (2014), Effective particle methods for the Fisher-Kolmogorov equations: theory and applications to brain tumor dynamics, Commun. Non. Sci. Num. Sim., 19, 3267-3283. 10.1016/j.cnsns.2014.02.004Belmonte-BeitiaJ.CalvoG. F.Pérez-GarcíaV. M.2014Effective particle methods for the Fisher-Kolmogorov equations: theory and applications to brain tumor dynamicsCommun. Non. Sci. Num. Sim.193267328310.1016/j.cnsns.2014.02.004Open DOISearch in Google Scholar

P.-Y. Bondiau, O. Clatz, M. Sermesant, P. Y. Marcy, H. Delingette, M. Frenay, N. Ayache. (2008), Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imaging, Phys. Med. Biol., 53, 879-893. 10.1088/0031-9155/53/4/00418263946BondiauP.-Y.ClatzO.SermesantM.MarcyP. Y.DelingetteH.FrenayM.AyacheN.2008Biocomputing: numerical simulation of glioblastoma growth using diffusion tensor imagingPhys. Med. Biol.5387989310.1088/0031-9155/53/4/00418263946Open DOISearch in Google Scholar

M. D. Bramson. (1978), Maximal displacement of branching Brownian motion, Comm. Pure Appl. Math., 31, 531-581. 10.1002/cpa.3160310502BramsonM. D.1978Maximal displacement of branching Brownian motionComm. Pure Appl. Math.3153158110.1002/cpa.3160310502Open DOISearch in Google Scholar

P. V. Brazhnik, J. J. Tyson. (2000), On traveling wave solutions of Fisher’s equation in two spatial dimensions, SIAM J. Appl. Math., 60, 371-391. 10.1137/S0036139997325497BrazhnikP. V.TysonJ. J.2000On traveling wave solutions of Fisher’s equation in two spatial dimensionsSIAM J. Appl. Math.6037139110.1137/S0036139997325497Open DOISearch in Google Scholar

N. F. Britton. (1986), Reaction-Diffusion equations and their applications to Biology, Academic Press, London. 10.1002/bimj.4710310608BrittonN. F.1986Reaction-Diffusion equations and their applications to BiologyAcademic PressLondon10.1002/bimj.4710310608Open DOISearch in Google Scholar

S. L. Brunton, J. L. Proctor, J. N. Kutz. (2016), Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 113, 2932-2937. 10.1073/pnas.1517384113BruntonS. L.ProctorJ. L.KutzJ. N.2016Discovering governing equations from data by sparse identification of nonlinear dynamical systemsProc. Natl. Acad. Sci. USA1132932293710.1073/pnas.1517384113Open DOISearch in Google Scholar

H. M. Byrne. (2010), Dissecting cancer through mathematics: from the cell to the animal model, Nat. Rev. Cancer, 10, 221-230. 10.1038/nrc280820179714ByrneH. M.2010Dissecting cancer through mathematics: from the cell to the animal modelNat. Rev. Cancer1022123010.1038/nrc2808Open DOISearch in Google Scholar

T. Dauxois, M. Peyrard, (2006), Physics of solitons, Cambridge University Press. www.cambridge.org/9780521854214DauxoisT.PeyrardM.2006Physics of solitonsCambridge University Presswww.cambridge.org/9780521854214Search in Google Scholar

D. Del-Castillo-Negrete, B.A. Carreras, V.E. Lynch. (2003), Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach. Phys. Rev. Lett., 91, 018302. 10.1103/PhysRevLett.91.01830212906582Del-Castillo-NegreteD.CarrerasB.A.LynchV.E.2003Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approachPhys. Rev. Lett.9101830210.1103/PhysRevLett.91.018302Open DOISearch in Google Scholar

C. Deroulers, M. Aubert, M. Badoual and B. Grammaticos. (2009), Modeling tumor cell migration: From microscopic to macroscopic models, Phys. Rev. E, 79, 031917. 10.1103/PhysRevE.79.031917DeroulersC.AubertM.BadoualM.GrammaticosB.2009Modeling tumor cell migration: From microscopic to macroscopic modelsPhys. Rev. E7903191710.1103/PhysRevE.79.031917Open DOISearch in Google Scholar

S. Fedotov, A. Iomin. (2007), Migration and proliferation dichotomy in tumor-cell invasion, Phys. Rev. Lett., 98, 118101. 10.1103/PhysRevLett.98.11810117501094FedotovS.IominA.2007Migration and proliferation dichotomy in tumor-cell invasionPhys. Rev. Lett.9811810110.1103/PhysRevLett.98.118101Open DOISearch in Google Scholar

R. A. Fisher. (1937), The wave of advance of advantageous genes, Ann. Eugenics, 7, 355-369. 10.1111/j.1469-1809.1937.tb02153.xFisherR. A.1937The wave of advance of advantageous genesAnn. Eugenics735536910.1111/j.1469-1809.1937.tb02153.xOpen DOISearch in Google Scholar

H. B. Frieboes, J. S. Lowengrub, S. Wise, X. Zheng, P. Macklin, E. Bearer, V. Cristini. (2007), Computer simulation of glioma growth and morphology, Neuroimage, 37, S59-S70. 10.1016/j.neuroimage.2007.03.008FrieboesH. B.LowengrubJ. S.WiseS.ZhengX.MacklinP.BearerE.CristiniV.2007Computer simulation of glioma growth and morphologyNeuroimage37S59S7010.1016/j.neuroimage.2007.03.008Open DOISearch in Google Scholar

A. Friedman, C.-Y. Kao. (2014), Mathematical modelling of biological processes, Springer. 10.1007/978-3-319-08314-8FriedmanA.KaoC.-Y.2014Mathematical modelling of biological processesSpringer10.1007/978-3-319-08314-8Open DOISearch in Google Scholar

N. Fenichel. (1979), Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eqs., 31, 53-98. 10.1016/0022-0396(79)90152-9FenichelN.1979Geometric singular perturbation theory for ordinary differential equationsJ. Diff. Eqs.31539810.1016/0022-0396(79)90152-9Open DOISearch in Google Scholar

A. Giese, R. Bjervig, M. E. Berens and M. Westphal. (2003), Cost of migration: Invasion of malignant gliomas and implications for treatment, J. Clin. Oncol., 21, 1624-1636. 10.1200/JCO.2003.05.06312697889GieseA.BjervigR.BerensM. E.WestphalM.2003Cost of migration: Invasion of malignant gliomas and implications for treatmentJ. Clin. Oncol.211624163610.1200/JCO.2003.05.06312697889Open DOISearch in Google Scholar

D. Hanahan, R.A. Weinberg. (2011), Hallmarks of cancer: the next generation, Cell, 144, 646-674. 10.1016/j.cell.2011.02.01321376230HanahanD.WeinbergR.A.2011Hallmarks of cancer: the next generationCell14464667410.1016/j.cell.2011.02.01321376230Open DOISearch in Google Scholar

H. Harpold, E.C. Alvord Jr., K. Swanson. (2007), The evolution of mathematical modeling of glioma proliferation and invasion, J. Neuropathol. Exp. Neurol., 66, 1-9. 10.1097/nen.0b013e31802d900017204931HarpoldH.Alvord Jr.E.C.SwansonK.2007The evolution of mathematical modeling of glioma proliferation and invasionJ. Neuropathol. Exp. Neurol.661910.1097/nen.0b013e31802d900017204931Open DOISearch in Google Scholar

H. Hatzikirou, D. Basanta, M. Simon, K. Schaller and A. Deutsch. (2012), Go or grow?: the key to the emergence of invasion in tumour progression, Math. Med. Biol., 29, 49-65. 10.1093/imammb/dqq01120610469HatzikirouH.BasantaD.SimonM.SchallerK.DeutschA.2012Go or grow?: the key to the emergence of invasion in tumour progressionMath. Med. Biol.29496510.1093/imammb/dqq01120610469Open DOISearch in Google Scholar

C.K.R.T. Jones. (1995), Geometric Singular Perturbation Theory, in Dynamical Systems. Eds. R. Johnson, Springer-Verlag, Berlin Heidelberg. 10.1007/BFb0095239JonesC.K.R.T.1995Geometric Singular Perturbation Theory, in Dynamical Systems.JohnsonR.Springer-VerlagBerlin Heidelberg10.1007/BFb0095239Open DOISearch in Google Scholar

O. Keunen, et al. (2011), Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastoma, Proc. Nat. Acad. Sci., 108, 3749-3754. 10.1073/pnas.1014480108KeunenO.2011Anti-VEGF treatment reduces blood supply and increases tumor cell invasion in glioblastomaProc. Nat. Acad. Sci.1083749375410.1073/pnas.1014480108304809321321221Open DOISearch in Google Scholar

E. Khain, M. Katakowski, N. Charteris, F. Jiang and M. Chopp. (2012), Migration of adhesive glioma cells: Front propagation and fingering. Phys. Rev. E, 86, 011904. 10.1103/PhysRevE.86.011904KhainE.KatakowskiM.CharterisN.JiangF.ChoppM.2012Migration of adhesive glioma cells: Front propagation and fingeringPhys. Rev. E8601190410.1103/PhysRevE.86.01190423005449Open DOISearch in Google Scholar

E. Konukoglu, O. Clatz, P. Y. Bondiau, H. Delingette, N. Ayache. (2010), Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation margins, Med. Image Anal., 14, 111-125. 10.1016/j.media.2009.11.0020042359KonukogluE.ClatzO.BondiauP. Y.DelingetteH.AyacheN.2010 Extrapolating glioma invasion margin in brain magnetic resonance images: suggesting new irradiation marginsMed. Image Anal.1411112510.1016/j.media.2009.11.00Open DOISearch in Google Scholar

Y. N. Kyrychko, K. B. Blyuss. (2009), Persistence of travelling waves in a generalized Fisher equation, Phys. Lett. A, 373, 668-674. 10.1016/j.physleta.2008.12.035KyrychkoY. N.BlyussK. B.2009Persistence of travelling waves in a generalized Fisher equationPhys. Lett. A37366867410.1016/j.physleta.2008.12.035Open DOISearch in Google Scholar

A. Martínez-González, G. F. Calvo, L. A. Pérez Romasanta, V. M. Pérez-García. (2012), Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implications, Bull. Math. Biol., 74, 2875-2896. 10.1007/s11538-012-9786-123151957Martínez-GonzálezA.CalvoG. F.Pérez RomasantaL. A.Pérez-GarcíaV. M.2012Hypoxic cell waves around necrotic cores in glioblastoma: a biomathematical model and its therapeutic implicationsBull. Math. Biol.742875289610.1007/s11538-012-9786-1351040723151957Open DOISearch in Google Scholar

A. Martínez-González, M. Durán-Prado, G. F. Calvo, F. J. Alcaín, L. A. Pérez Romasanta, V. M. Pérez-García. (2015), Combined therapies of antithrombotics and antioxidants delay in silico brain tumour progression, Math. Med. Biol., 32, 239-262. 10.1093/imammb/dqu00224562299Martínez-GonzálezA.Durán-PradoM.CalvoG. F.AlcaínF. J.Pérez RomasantaL. A.Pérez-GarcíaV. M.2015Combined therapies of antithrombotics and antioxidants delay in silico brain tumour progressionMath. Med. Biol.3223926210.1093/imammb/dqu00224562299Open DOISearch in Google Scholar

J. Müller, C. Kuttler, (2015), Methods and models in mathematical biology: deterministic and stochastic approaches, Springer-Verlag. 10.1007/978-3-642-27251-6MüllerJ.KuttlerC.2015Methods and models in mathematical biology: deterministic and stochastic approachesSpringer-Verlag10.1007/978-3-642-27251-6Open DOISearch in Google Scholar

J. D. Murray. (2007), Mathematical biology, Third Edition, Springer. 10.1007/b98868MurrayJ. D.2007Mathematical biologyThirdSpringer10.1007/b98868Open DOISearch in Google Scholar

J. D. Murray. (1977), Lectures on nonlinear-differential equation models in biology, Oxford University Press, London. 10.1016/0025-5564(79)90023-3MurrayJ. D.1977Lectures on nonlinear-differential equation models in biologyOxford University PressLondon10.1016/0025-5564(79)90023-3Open DOISearch in Google Scholar

Y. Nec, A.A. Nepomnyashchy, A.A. Golovin. (2008), Weakly nonlinear dynamics in reaction-diffusion systems with Lévy flights. Phys. Scr. T132, 014043. 10.1088/0031-8949/2008/T132/014043NecY.NepomnyashchyA.A.GolovinA.A.2008Weakly nonlinear dynamics in reaction-diffusion systems with Lévy flightsPhys. Scr. T13201404310.1088/0031-8949/2008/T132/014043Open DOISearch in Google Scholar

M. Onishi, T. Ichikawa, K. Kurozumi and I. Date. (2011), Angiogenesis and invasion in glioma, Brain Tumor Pathol., 28, 13-24. 10.1007/s10014-010-0007-z21221826OnishiM.IchikawaT.KurozumiK.DateI.2011Angiogenesis and invasion in gliomaBrain Tumor Pathol.28132410.1007/s10014-010-0007-z21221826Open DOISearch in Google Scholar

J. Pérez-Beteta, et al. (2016), Glioblastoma: does the pre-treatment geometry matter? A postcontrast T1 MRI-based study. Eur. Radiol. 10.1007/s00330-016-4453-9Pérez-BetetaJ.2016Glioblastoma: does the pre-treatment geometry matter?A postcontrast T1 MRI-based study. Eur. Radiol.10.1007/s00330-016-4453-927329522Open DOISearch in Google Scholar

V.M. Pérez-García, et al. Applied mathematics and nonlinear sciences in the war on cancer (To appear in Applied Mathematics and Nonlinear Sciences).Pérez-GarcíaV.M.Applied mathematics and nonlinear sciences in the war on cancer (To appear in Applied Mathematics and Nonlinear Sciences)Search in Google Scholar

V. M. Pérez-García, G. F. Calvo, J. Belmonte-Beitia, D. Diego, L. Pérez-Romasanta. (2011), Bright solitary waves in malignant gliomas, Phys. Rev. E, 84, 021921. 10.1103/PhysRevE.84.021921Pérez-GarcíaV. M.CalvoG. F.Belmonte-BeitiaJ.DiegoD.Pérez-RomasantaL.2011Bright solitary waves in malignant gliomasPhys. Rev. E8402192110.1103/PhysRevE.84.02192121929033Open DOISearch in Google Scholar

R. C. Rockne, et al. (2015), A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET, J. R. Soc. Interface, 12, 20141174. 10.1098/rsif.2014.117425540239RockneR. C.2015A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PETJ. R. Soc. Interface122014117410.1098/rsif.2014.1174430541925540239Open DOISearch in Google Scholar

M. Rosa, M.L Gandarias (2015), Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinates, Commun Nonlinear Sci Numer Simulat, 25, 74-83. 10.1016/j.cnsns.2015.01.010RosaM.GandariasM.L.2015Symmetry analysis and exact solutions for a generalized Fisher equation in cylindrical coordinatesCommun Nonlinear Sci Numer Simulat25748310.1016/j.cnsns.2015.01.010Open DOISearch in Google Scholar

M. Rosa, M.L Gandarias (2016), Multiplier method and exact solutions for a density dependent reaction-diffusion equation, Applied Mathematics and Nonlinear Sciences, 1, 311-320. 10.21042/AMNS.2016.2.00026RosaM.GandariasM.L.2016Multiplier method and exact solutions for a density dependent reaction-diffusion equationApplied Mathematics and Nonlinear Sciences131132010.21042/AMNS.2016.2.00026Open DOISearch in Google Scholar

P.O. Sakariassen, et al. (2006), Angiogenesis-independent tumor growth mediated by stem-like cancer cells, Proc. Nat. Acad. Sci., 103, 16466-16471. 10.1073/pnas.0607668103SakariassenP.O.2006Angiogenesis-independent tumor growth mediated by stem-like cancer cellsProc. Nat. Acad. Sci.103164661647110.1073/pnas.0607668103Open DOISearch in Google Scholar

M. Schmidt, H. Lipson. (2009), Distilling free-form natural laws from experimental data, Science, 324, 81-85. 10.1126/science.116589319342586SchmidtM.LipsonH.2009Distilling free-form natural laws from experimental dataScience324818510.1126/science.1165893Open DOISearch in Google Scholar

A. C. Scott. (2007), The nonlinear universe: chaos, emergence, life, Springer. http://www.springer.com/us/book/9783540341529ScottA. C.2007The nonlinear universe: chaos, emergence, lifeSpringerhttp://www.springer.com/us/book/9783540341529Search in Google Scholar

R. Stupp, et al. (2005), Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma, New Eng. J. Med.352, 987-996. http://www.nejm.org/doi/full/10.1056/NEJMoa043330#t=article10.1056/NEJMoa043330StuppR.2005Radiotherapy plus concomitant and adjuvant temozolomide for glioblastomaNew Eng. J. Med.352987996http://www.nejm.org/doi/full/10.1056/NEJMoa043330#t=articleOpen DOISearch in Google Scholar

R. Stupp, et al. (2009), Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial, Lancet Oncol., 10, 459-466. 10.1016/S1470-2045(09)70025-7StuppR.2009Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trialLancet Oncol.1045946610.1016/S1470-2045(09)70025-7Open DOISearch in Google Scholar

D. Sturm, et al. (2014), Paediatric and adult glioblastoma: multiform (epi)genomic culprits emerge, Nat. Rev. Cancer, 14, 92-107. 10.1038/nrc365524457416SturmD.2014Paediatric and adult glioblastoma: multiform (epi)genomic culprits emergeNat. Rev. Cancer149210710.1038/nrc3655400322324457416Open DOISearch in Google Scholar

C. Suarez, F. Maglietti, M. Colonna, K. Breitburd, G. Marshall. (2012), Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical cases, PLoS ONE, 7, e39616. 10.1371/journal.pone.003961622761843SuarezC.MagliettiF.ColonnaM.BreitburdK.MarshallG.2012Mathematical modeling of human glioma growth based on brain topological structures: study of two clinical casesPLoS ONE7e3961610.1371/journal.pone.0039616338627322761843Open DOISearch in Google Scholar

K.R. Swanson, R.C. Rostomily, E.C. Alvord Jr. (2008), A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principle, British J. Cancer, 98, 113-119. 10.1038/sj.bjc.6604125SwansonK.R.RostomilyR.C.Alvord JrE.C.2008A mathematical modelling tool for predicting survival of individual patients following resection of glioblastoma: a proof of principleBritish J. Cancer9811311910.1038/sj.bjc.6604125235969218059395Open DOISearch in Google Scholar

S. Tanaka, D. N. Louis, W. T. Curry, T. T. Batchelor, J. Dietrich. (2013), Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nat. Rev. Clin. Oncol., 10, 14-26. 10.1038/nrclinonc.2012.20423183634TanakaS.LouisD. N.CurryW. T.BatchelorT. T.DietrichJ.2013Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end?Nat. Rev. Clin. Oncol.10142610.1038/nrclinonc.2012.20423183634Open DOISearch in Google Scholar

M. Tektonidis, H. Hatzikirou, A. Chauviere, M. Simon, K. Schaller, A. Deutsch. (2011), Identification of intrinsic in vitro cellular mechanisms for glioma invasion. J. Theo. Biol. 287, 131-147. 10.1016/j.jtbi.2011.07.012TektonidisM.HatzikirouH.ChauviereA.SimonM.SchallerK.DeutschA.2011Identification of intrinsic in vitro cellular mechanisms for glioma invasionJ. Theo. Biol.28713114710.1016/j.jtbi.2011.07.01221816160Open DOISearch in Google Scholar

H. C. Tuckwell. (1988), Introduction to Theoretical Neurobiology, Cambridge Stud. Math. Biol. 8, Cambridge University Press, Cambridge, UK. 10.1017/CBO9780511623271TuckwellH. C.1988Introduction to Theoretical Neurobiology, Cambridge Stud. Math. Biol. 8Cambridge University PressCambridge, UK10.1017/CBO9780511623271Open DOISearch in Google Scholar

C.H. Wang, et al. (2009), Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical model, Cancer Res., 69, 9133-9140. 10.1158/0008-5472.CAN-08-386319934335WangC.H.2009Prognostic significance of growth kinetics in newly diagnosed glioblastomas revealed by combining serial imaging with a novel biomathematical modelCancer Res.699133914010.1158/0008-5472.CAN-08-3863346715019934335Open DOISearch in Google Scholar

F.A. Williams. (1965), Combustion theory, Addison-Wesley, Reading, MA.WilliamsF.A.1965Combustion theoryAddison-WesleyReading, MASearch in Google Scholar

D. Wodarz, N. L. Komarova. (2014), Dynamics of cancer: mathematical foundations of oncology, World Scientific. http://www.worldscientific.com/worldscibooks/10.1142/8973WodarzD.KomarovaN. L.2014Dynamics of cancer: mathematical foundations of oncologyWorld Scientifichttp://www.worldscientific.com/worldscibooks/10.1142/897310.1142/8973Search in Google Scholar

eISSN:
2444-8656
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics