Open Access

Controllability for neutral stochastic functional integrodifferential equations with infinite delay


Cite

Introduction

Qualitative properties such as existence, uniqueness, stability and controllability for various types of stochastic differential equations have been extensively studied by many researchers (see [4, 6, 8, 17] and references therein). Many fundamental problems of control theory such as pole-assignment, stabilizability and optimal control may be solved under the assumption that the system is controllable. The controllability problem for an evolution equation also consists of driving the solution of the system to a prescribed final target state (exactly or in some approximate way) in a finite time interval. As an area of application oriented mathematics, the control problem has been studied extensively in the fields of infinite dimensional nonlinear systems [10]. The theory of semigroups of bounded linear operators is closely related to the solution of differential equations. In recent years, this theory has been applied to a large class of nonlinear differential equations in Banach spaces. Using the method of semigroups, various types of solutions of semilinear evolution equations have been discussed by Pazy in [20]. Semigroup theory gives a unified treatment of a wide class of stochastic parabolic, hyperbolic and functional differential equations, and much effort has been devoted to the study of controllability results for such evolution equations.

Motivated by the above works, in this paper we address sufficient conditions to ensure the controllability of neutral stochastic integrodifferential equations with infinite delays in a Hilbert space described by

{d[x(t)+F(t,xt)]=[A[x(t)+F(t,xt)]+0tB(ts)[x(s)+F(s,xs)]ds+Cu(t)+h(t,xt)]dt+tg(t,s,xs)dw(s),tJ:=[0,b],x(0)=ξ,$$\begin{array}{} \displaystyle \left\{ \begin{array}{*{20}{l}} d[x(t) + F(t,{x_t})] = \left[ {A[x(t) + F(t,{x_t})] + \int_0^t B (t - s)[x(s) + F(s,{x_s})]ds + Cu(t) + h(t,{x_t})} \right]dt \\ + \int_{ - \infty }^t g (t,s,{x_s})dw(s),\:\:t \in J: = [0,b], \\ x(0) = \xi , \\ \end{array}\right. \end{array}$$

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators T (t),t ≥ 0, on a separable Hilbert space H with inner product (⋅, ⋅) and norm ∥ ⋅ ∥. Let K be another separable Hilbert space with inner product (⋅, ⋅)K and norm ∥ ⋅ ∥K. Suppose {w(t)}t≥0 is a given K-valued Brownian motion or Wiener process with a finite trace nuclear covariance operator Q ≥ 0. We are also employing the same notation ∥ ⋅ ∥ for the norm L(K, H), where L(K, H) denotes the space of all bounded linear operators from K into H. The histories xt belongs to some abstract phase space B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$ defined axiomatically (see Section 2); F,h:J×BH$\begin{array}{} \displaystyle F, h : J \times \mathfrak{B} \rightarrow H \end{array}$ are the measurable mappings in H-norm, and G:J×J×BLQ(K,H)(LQ(K,H)$\begin{array}{} \displaystyle G : J \times J \times \mathfrak{B} \rightarrow L_Q(K , H ) (L_Q (K, H) \end{array}$ denotes the space of all Q-Hilbert-Schmidt operators from K into H, which is going to be defined below) is a measurable mapping in LQ(K, H)-norm. The control function u(⋅) taking values in L2(J, U) of admissible control functions for a separable Hilbert space U, C is a bounded linear operator from U into H, and ϕ(t) is a B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$-valued random variable independent of Brownian motion {w(t)} with finite second moment.

The aim of our paper is to present some results on the controllability of (1) based on the Nussbaum fixed point theorem combined with theories of resolvent operators for integrodifferential equations. Our main results concerning (1), rely essentially on techniques using strongly continuous family of operators {R(t), t ≥ 0}, defined on the Hilbert space H and called their resolvent. The resolvent operator is similar to the semigroup operator for abstract differential equations in Banach spaces. However, the resolvent operator does not satisfy semigroup properties (see, for instance, [11]), and our objective in this paper is to apply the theories of resolvent operators, which was proposed by Grimmer [2].

The rest of this paper is organized as follows. In Section 2, we recall some basic definitions, notations, and lemmas which will be needed in the sequel. In Section 3, the controllability of neutral stochastic integrodifferential equations with infinite delay is studied in Hilbert spaces. Section 4 is devoted to an application which illustrates the main results.

Preliminaries
Basic Concepts of Stochastic Analysis

For more details on this section, the reader is referred to Da Prato and Zabczyk [5], Gard [12], and the references therein. Throughout the paper, H and K denote real separable Hilbert spaces.

Let (Ω, F$\begin{array}{} \displaystyle \mathfrak{F} \end{array}$, P) be a complete probability space furnished with a complete family of right continuous increasing sub σ-algebras {Ft,tJ}$\begin{array}{} \displaystyle \lbrace \mathfrak{F}_{t}, t \in J\rbrace \end{array}$ satisfying FtF$\begin{array}{} \displaystyle \mathfrak{F}_t \subset \mathfrak{F} \end{array}$. A H-valued random variable is an F$\begin{array}{} \displaystyle \mathfrak{F} \end{array}$-measurable function x(t) : Ω → H, and a collection of random variables S = {x(t, w) : Ω → H|tJ} is called a stochastic process. Usually, we suppress the dependence on ω ∊ Ω and write x(t) instead of x(t, ω) and x(t) : JH in the place of S. Let βn(t)(n = 1, 2,...) be a sequence of real-valued one-dimensional standard Brownian motions mutually independent over (Ω, F$\begin{array}{} \displaystyle \mathfrak{F} \end{array}$, P). Set

w(t)=n=1λnβn(t)ζn, t0,$$\begin{array}{} \displaystyle w(t)= \sum_{n=1}^{\infty} \sqrt{\lambda_n}\beta_n(t)\zeta_n, \quad t\geq 0, \end{array}$$

where λn ≥ 0(n = 1, 2,...) are nonnegative real numbers and {ζn}(n = 1, 2,...) is complete orthonormal basis in K. Let QL(K, K) be an operator defined by Qζn = λnζn with finite TrQ=Σn=1λn<$\begin{array}{} \displaystyle TrQ = \Sigma _{n = 1}^\infty {\lambda _n} <\ \infty \end{array}$ (Tr denotes the trace of the operator). Then the above K-valued stochastic process w(t) is called a Q-Wiener process. We assume that Ft=σ(w(s):0st)$\begin{array}{} \displaystyle \mathfrak{F}_t = \sigma(w(s) : 0 \leq s \leq t) \end{array}$ is the σ-algebra generated by w and FT=F$\begin{array}{} \displaystyle \mathfrak{F}_T = \mathfrak{F} \end{array}$. Let φL(K, H) and define

φQ2=Tr(φQφ*)=n=1λnφζn2.$$\begin{array}{} \displaystyle \| \varphi \|^2_Q = Tr (\varphi Q \varphi^*)= \sum_{n=1}^\infty \| \sqrt{\lambda_n} \varphi \zeta_n \|^2. \end{array}$$

If ∥φQ < ∞, then φ is called a Q-Hilbert-Schmidt operator. Let LQ(K, H) denote the space of all Q-Hilbert-Schmidt operators φ : KH. The completion LQ(K, H) of L(K, H) with respect to the topology induced by the norm ∥ ⋅ ∥Q where φQ2=φ,φ$\begin{array}{} \displaystyle \| \varphi \|^2_Q = \langle \varphi, \varphi \rangle \end{array}$ is a Hilbert space with the above norm topology.

In this work, we will employ an axiomatic definition of the phase space B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$ introduced by Hale and Kato [13]. The axioms of the space B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$ are established for F0$\begin{array}{} \displaystyle \mathfrak{F}_0 \end{array}$-measurable functions from J0 into H, endowed with a seminorm ·B$\begin{array}{} \displaystyle \| \cdot \|_{\mathfrak{B}} \end{array}$. We will assume that B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$ satisfies the following axioms:

(ai) If x : (−∞, a) → H, a > 0, is continuous on [0, a) and x0 in B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$, then for every t ∊ [0, a) the following conditions hold:

xt is in B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$,

x(t)LxtB,$\begin{array}{} \displaystyle \| x(t)\| \leq L\| x_t \|_{\mathfrak{B}}, \end{array}$

xtBΓ(t)sup{x(s):0st}+N(t)x0B$\begin{array}{} \displaystyle \| x_t \|_{\mathfrak{B}} \leq \Gamma(t)\sup\lbrace \| x(s)\| : 0\leq s\leq t \rbrace +N(t) \| x_0 \|_{\mathfrak{B}} \end{array}$, where L > 0 is a constant; Γ, N : [0, ∞) → [0, ∞), Γ is continuous, N is locally bounded, and L, Γ, N are independent of x(⋅).

(aii) For the function x(⋅) in (ai), xt is a B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$-valued function [0, a).

(aiii) The space B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$ is complete.

Suppose x(t) : Ω → H, ta, is a continuous Ft$\begin{array}{} \displaystyle \mathfrak{F}_t \end{array}$-adapted H-valued stochastic process. We can associate with another process xt:ΩB,t0$\begin{array}{} \displaystyle x_t : \Omega \rightarrow \mathfrak{B}, t \geq 0 \end{array}$ by setting xt = {x(t + s)(w) : s ∊ (−∞, 0]}. This is regarded as a B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$-valued stochastic process.

The collection of all strongly measurable, square-integrable H-valued random variables, denoted by L2(Ω,F,P;H)L2(Ω;H)$\begin{array}{} \displaystyle {L_2}(\Omega ,,P;H) \equiv {L_2}(\Omega ;H) \end{array}$, is a Banach space equipped with norm

x(·)L2=(Ex(·;ω)H2)12,$$\begin{array}{} \displaystyle \| x(\cdot)\|_{L_2} = \left( \mathbb{E} \| x(\cdot; \omega)\|^2_H\right)^{\frac{1}{2}}, \end{array}$$

where the expectation E$\begin{array}{} \displaystyle \mathbb{E} \end{array}$ is defined by E(h)=Ωh(ω)dP$\begin{array}{} \displaystyle \mathbb{E}(h) = \int_\Omega h(\omega)dP \end{array}$.

Let J1 = (−∞, b] and C(J1, L2(Ω;H)) be the Banach space of all continuous maps from J1 into L2(Ω;H) satisfying the condition suptJ1Ex(t)2<$\begin{array}{} \sup\nolimits_{t \in {J_1}} \mathbb{E}\| x (t)\|{^2} \lt \infty \end{array}$. An important subspace is given by L20(Ω,H)={fL2(Ω,H):f$\begin{array}{} \displaystyle L_2^0(\Omega, H) = \{f \in L_2(\Omega, H) : f \end{array}$ is F0$\begin{array}{} \displaystyle \mathfrak{F}_0 \end{array}$ − measurabale}.

Let Z be the closed subspace of all continuous process x that belong to the space C(J1, L2(Ω;H)) consisting of Ft$\begin{array}{} \displaystyle \mathfrak{F}_t \end{array}$-adapted measurable processes such that the F0$\begin{array}{} \displaystyle \mathfrak{F}_0 \end{array}$-adapted processes ϕL2(Ω;B)$\begin{array}{} \displaystyle \phi \in L_2(\Omega;\mathfrak{B}) \end{array}$. Let ∥ ⋅ ∥Z be a seminorm in Z defined by

xZ=(suptJxtB2)12,$$\begin{array}{} \displaystyle \| x \|_Z= \left( \sup_{t\in J} \| x_t \|_{\mathfrak{B}}^2 \right)^\frac{1}{2}, \end{array}$$

where

xtBN¯EϕB+Γ¯sup{Ex(s):0sb},$$\begin{array}{} \displaystyle \| x_t \|_{\mathfrak{B}} \leq \bar{N} \mathbb{E} \| \phi \|_{\mathfrak{B}} + \overline{\Gamma} \sup \lbrace \mathbb{E} \| x(s) \|: 0 \leq s \leq b \rbrace, \end{array}$$

N¯=suptJ{N(t)},Γ¯=suptJ{Γ(t)}$\begin{array}{} \displaystyle \overline{N} = \sup\nolimits_{t\in J}\{N(t)\}, \overline{\Gamma} = \sup\nolimits_{t\in J} \{\Gamma(t)\} \end{array}$. It is easy to verify that Z furnished with the norm topology as defined above is a Banach space.

Resolvent operator for Eq. (1)

In the present section, we recall some definitions, notations and propreties needed in the sequel. In what follows, H will denote a Banach space, A and B(t) are closed linear operators on H. Y represents the Banach space D(A)$\begin{array}{} \displaystyle \mathscr{D}(A) \end{array}$, the domain of operator A, equiped with the graph norm

yY:=Ay+yfor yY.$$\begin{array}{} \displaystyle \| y\|_{Y} := \| Ay \| + \| y \| \, \text{for} \quad y \in Y. \end{array}$$

The notation C([0, +∞); Y) stands for the space of all continuous function from [0, +∞) into Y. We then consider the following Cauchy problem

{ν'(t)=Aν(t)+0tB(ts)ν(s)dsfor t0,ν(0)=ν0H.$$\begin{array}{} \displaystyle \left\{ \begin{array}{*{20}{l}} {\nu {\rm{'}}(t) = A\nu (t) + \int_0^t B (t - s)\nu (s)ds\;\;\;{\rm{for}}\quad t \ge 0,} \hfill \\ {\nu (0) = {\nu _0} \in H.} \hfill \\ \end{array}\right. \end{array}$$

Definition 1.

[2] A resolvent operator of Eq. (2) is a bounded linear operator valued function R(t)(H)$\begin{array}{} \displaystyle R(t)\in \mathscr{L}(H) \end{array}$ for t ≥ 0, satisfying the following propreties:

R(0) = I and R(t)N˜eβt$\begin{array}{} \displaystyle \| R(t)\| \leq \tilde{N}e^{\beta t} \end{array}$ for some constant N˜$\begin{array}{} \displaystyle \tilde{N} \end{array}$ and β.

For each xH, R(t)x is strongly continuous for t ≥ 0.

For xY, R(.)x ∊ C1([0, +∞);H) ∩ C([0, +∞); Y) and

R(t)x =AR(t)x+0tB(ts)xds=R(t)Ax+0tR(ts)xdsfor t0.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {R'(t)x{\rm{ }}} \hfill & = \hfill & {AR(t)x + \int_0^t B (t - s)xds} \hfill \\ {} \hfill & = \hfill & {R(t)Ax + \int_0^t R (t - s)xds\;\;\;{\rm{for}}\;\quad t \ge 0.} \hfill \\ \end{array} \end{array}$$

For additional details on resolvent operators, we refer the reader to [2]. The resolvent operator plays an important role to study the existence of solutions and to establish a variation of constants formula for nonlinear systems. For this reason, we need to know when the linear system (2) possesses a resolvent operator. Theoreml below provides a satisfactory answer to this problem.

In what follows we suppose the following assumptions:

(H1)A is the infinitesimal generator of a C0— semigroup (T(t))t≥0 on H

(H2) For all t ≥ 0, B(t) is a continuous linear operator from (Y, ∥ ⋅ ∥Y) into (H, ∥ ⋅ ∥H).

Moreover, there exists an integrable function c:[0,+)+$\begin{array}{} \displaystyle \,c:[0,+\infty)\rightarrow \mathbb{R}^{+} \end{array}$ such that for any yY, tB(t)y belongs to W1,1 ([0, +∞), H) and

ddtB(t)yHc(t)yYforyYandt0.$$\begin{array}{} \displaystyle \| \frac{d}{dt}B(t)y\|_{H} \leq c(t)\| y \|_Y\; \mbox{for}\; y \in Y \;\mbox{and}\, t\geq 0. \end{array}$$

We recall that Wk,p(O)={ω˜Lp(O):Dαω˜Lp(O),αk}$\begin{array}{} \displaystyle W^{k,p}(\mathbb{O})=\{\tilde{\omega} \in L^{p}(\mathbb{O}):D^{\alpha}\tilde{\omega} \in L^{p}(\mathbb{O}), \forall \|\alpha \| \leq k\} \end{array}$, where Dαω˜$\begin{array}{} \displaystyle D^{\alpha}\tilde{\omega} \end{array}$ is the weak α-th partial derivative of ω˜$\begin{array}{} \displaystyle \tilde{\omega} \end{array}$.

Theorem 1.

[2] Assume that hypotheses (H1) and (H2) hold. Then the Eq. (2) admits a resolvent operator (R(t))t≥0.

Lemma 2.

[11] Let hypotheses (H1) and (H2) be satisfied. Then there exists a constant L = L(T) such that

R(t+ε)R(ε)R(t)Lε,0εtT.$$\begin{array}{} \displaystyle \|R(t+\varepsilon)-R(\varepsilon)R(t)\|\;\leq L\varepsilon,\;\;\;\;\forall 0\leq \varepsilon\leq t\leq T. \end{array}$$

Theorem 3.

[11] Assume that hypotheses (H1) and (H2) hold. Let T(t) be a compact operator for t > 0. Then, the corresponding resolvent operator R(t) of Eq. (2) is continuous for t > 0 in the operator norm, namely, for t0 > 0, it holds that limh→0R(t0 + h) – R(t0)∥ = 0.

In the sequel, we recall some results on the existence of solutions for the following integro-differentiel equation

{ν(t)=Aν(t)+0tB(ts)ν(s)ds+q(t)for t0,ν(0)=ν0H.$$\begin{array}{} \displaystyle \left\{ \begin{array}{*{20}{l}} {\nu '(t) = A\nu (t) + \int_0^t B (t - s)\nu (s)ds + q(t)\;\;\;{\rm{for}}\quad t \ge 0,} \hfill \\ {\nu (0) = {\nu _0} \in H.} \hfill \\ \end{array}\right. \end{array}$$

where q : [0, +∞[→ H is continuous function.

Definition 2.

A continuous function ν : [0, +∞) → H is said to be a strict solution of the Eq. (3) if

νC1([0, +∞);H) ∩ C([0, +∞);Y),

ν satisfies Eq. (3) for t ≥ 0.

Remark 1. From this definition we deduce that ν(t)D(A)$\begin{array}{} \displaystyle \nu (t) \in {\mathscr D}(A) \end{array}$, and the function B(ts)ν(s) is integrable, for all t > 0 and s ∊ [0, +∞).

Theorem 4.

[2] Assume that hypotheses (H1) and (H2) hold. If v is a stict solution of Eq. (3), then the following variation of constant formula holds

ν(t)=R(t)ν0+0tR(ts)q(s)dsfor t0.$$\begin{array}{} \displaystyle \nu (t) = R(t){\nu _0} + \int_0^t R (t - s)q(s)ds\;\;\;{\rm{for}}\quad t \ge 0. \end{array}$$

Accordingly, we can establish the following definiton.

Definition 3.

A function ν : [0, +∞) → H is called mild solution of Eq. (3), for ν0H, if ν satisfies the variation of constants formula (4).

The next theorem provides sufficient conditions ensuring the regularity of solutions of Eq.(3).

Theorem 5.

Let qC1([0, +∞);H) and ν be defined by (4). Ifν0D(A)$\begin{array}{} \displaystyle \nu_0 \in \mathscr{D}(A) \end{array}$, then ν is a strict solution of the Eq. (3).

Definition 4.

An Ft$\begin{array}{} \displaystyle \mathfrak{F}_t \end{array}$-adapted stochastic process x(t) : J1H is a mild solution of the abstract Cauchy problem (1) if x0=ϕB$\begin{array}{} \displaystyle x_0 = \phi \in \mathfrak{B} \end{array}$ on J0 satisfying ϕB2<$\begin{array}{} \displaystyle \| \phi \|^2_{\mathfrak{B}} <\ \infty \end{array}$. The restriction of x(⋅) to the interval [0, b) is a continuous stochastic process such that the following equation is satisfied

x(t)=R(t)[ϕ(0)+F(0,ϕ)]F(t,xt)+0tR(ts)[h(s,xs)+Cu(s)+sg(s,τ,xτ)dw(τ)]ds for a.etJ.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {x(t)} \hfill & = \hfill & {R(t)[\phi (0) + F(0,\phi )] - F(t,{x_t})} \hfill \\ {} \hfill & {} \hfill & { + \int_0^t R (t - s)\left[ {h(s,{x_s}) + Cu(s) + \int_{ - \infty }^s g (s,\tau ,{x_\tau })dw(\tau )} \right]ds\quad {\text{for a.e}}\;\;t \in J.} \hfill \\ \end{array} \end{array}$$

Definition 5.

The nonlinear neutral stochastic integrodifferential equation (1) is said to be controllable on the interval J, if for every continuous initial stochastic process ϕB$\begin{array}{} \displaystyle \phi \in \mathfrak{B} \end{array}$ defined on J0, there exists a stochastic control uL2(J, U) that is adapted to the filtration {t}t0$\begin{array}{} \displaystyle \{ \mathscr{F}_t\}_{t\geq 0} \end{array}$ such that the solution x(⋅) of (1) satisfies x(b) = x1, where x(b) is a random variable which is b$\begin{array}{} \displaystyle \,\mathscr{F}_{b} \end{array}$-measurable, x1 and b are preassigned terminal state and time, respectively.

As a key tool for developing the controllability in this work, the consideration of this paper is based on the following fixed point theorem due Nussbaum [17]. Throughout the paper, Br[x]L2(Ω,B)$\begin{array}{} \displaystyle B_r[x] \subset L_2(\Omega, \mathfrak{B}) \end{array}$ is the closed ball centered at x with radius r > 0.

Theorem 6.

(Nussbaum Fixed Point Theorem). Let S be a closed, bounded, and convex subset of a Banach space X. Let Φ1, Φ2be continuous mappings from S into X such that

1 + Φ2)SS.

∥Φ1x1 − Φ1x2∥ ≤ kx1x2for all x1, x2S, where k is a constant and 0 ≤ k < 1.

Φ2(S)¯$\begin{array}{} \displaystyle \overline{{\Phi}_2(S)} \end{array}$is compact.

Then the operator Φ1 + Φ2has a fixed point in S.

Main result

To investigate the controllability of system (1), we assume the following conditions:

(H3) the resolvent operator R(t) is compact with ∥R(t)∥ ≤ M, for all t ≥ 0;

(H4) the linear operator W from L2(J, U) into L2(Ω;H), defined by

W=0bR(bs)(Cu)(s)ds$$\begin{array}{} \displaystyle W = \int_0^b R(b- s)(Cu)(s)ds \end{array}$$

has an induced inverse operator W−1 that takes values in L2(J, U)/KerW (see Carmichael and Quinn [7]) and there exist positive constants MC,MW such that

CMCandW1MW;$$\begin{array}{} \displaystyle \| C\| \leq M_C \,\text{and}\; \| W^{-1}\| \leq M_{W}; \end{array}$$

(H5) F:J×BH$\begin{array}{} \displaystyle F: J \times \mathfrak{B} \rightarrow H \end{array}$ is a continuous function, and there exist a constant MF > 0 such that the function F satisfies the Lipschitz condition:

F(s1,ψ1)F(s2,ψ2)MF(|s1s2|+ψ1ψ2B)$$\begin{array}{} \displaystyle \| F(s_1, \psi_{1})- F(s_2, \psi_{2}) \| \leq M_F \left( | s_1 -s_2| + \| \psi_1 - \psi_2 \|_{\mathfrak{B}}\right) \end{array}$$

for 0s1,s2b,ψ1,ψ2L2(J,B);$\begin{array}{} \displaystyle 0\le s_1,s_2 \leq b, \psi_1, \psi_2 \in L_2(J, \mathfrak{B}) ; \end{array}$

(H6) F and h:J×BH$\begin{array}{} \displaystyle h: J \times \mathfrak{B} \rightarrow H\, \end{array}$ are continuous and there exists nonnegative constants M¯F$\begin{array}{} \displaystyle \,\overline{M}_{F} \end{array}$, Mh such that

F(t,ψ)M¯Fandh(t,ψ)Mh$$\begin{array}{} \displaystyle \| F(t,\psi) \| \leq \displaystyle \overline{M}_{F}\;\;\mbox{and}\;\; \| h(t,\psi) \| \leq M_h \end{array}$$

for every 0 ≤ stb, ψBr[ϕ];

(H7) the function g:J×J×BL(K,H)$\begin{array}{} \displaystyle g : J \times J \times \mathfrak{B} \rightarrow L(K, H) \end{array}$ is continuous and there exists Mg ≥ 0 such that

g(t,s,η)QMg$$\begin{array}{} \displaystyle \| g(t, s, \eta)\|_Q \leq M_g \end{array}$$

for every 0 ≤ stb and ηBr[ϕ];

(H8) For each ϕB$\begin{array}{} \displaystyle \phi \in \mathfrak{B} \end{array}$

l(t)=limaa0g(t,s,ϕ(s))dw(s)$$\begin{array}{} \displaystyle l(t)=\lim_{a \rightarrow \infty} \int_{-a}^0 g(t, s, \phi(s))dw(s) \end{array}$$

exists and it is continuous. Further, there exists M¯g$\begin{array}{} \displaystyle \overline{M}_g \end{array}$ such that l(t)QM¯g$\begin{array}{} \displaystyle \| l(t)\|_Q \leq \overline{M}_g \end{array}$;

Theorem 7.

In addition to hypotheses (H1)-(H8), assume that the following conditions are also satisfied

q=r4ε4Γ¯2andρ=64[{1+(6MWMCMb)2}(MFΓ¯)2],$\begin{array}{} \displaystyle q = \frac{{r - 4\varepsilon }}{{4{{\overline \Gamma }^2}}}and\rho = 64\left[ {\left\{ {1 + {{\left( {6{M_W}{M_C}Mb} \right)}^2}} \right\}{{\left( {{M_F}\overline \Gamma } \right)}^2}} \right], \end{array}$

64 [M2M¯F2+M¯F2+(Mb)2[MC2G+Mh2+M¯g2+Tr(Q)bMg2]=(1ρ)q,$\begin{array}{} \displaystyle 64\left[ {{M^2}\overline M _F^2 + \overline M _F^2 + {{\left( {Mb} \right)}^2}\left[ {M_C^2\mathbb{G}' + M_h^2 + \overline M _G^2 + Tr\left( Q \right)bM_g^2} \right]} \right] = \left( {1 - p} \right)q, \end{array}$

L0=2MF2<1.$\begin{array}{} \displaystyle L_0= 2M_F^2 <\ 1. \end{array}$

Then, system (1) is controllable on J.

Proof. Using hypothesis (H4) for an arbitrary x(⋅) and for a.e tJ, define the control

uxb(t)=W1x1R(b)(ϕ(0)+F(0,ϕ))+F(b,xb)0bR(bs)×h(s,xs)+l(s)+0sg(s,τ,xτ)dw(τ)ds(t)uxb(t)=W1x1R(b)[ϕ(0)+F(0,ϕ)]+F(b,xb)0bR(bs)[h(s,xs)+l(s)]ds+0sg(s,τ,xτ)dw(τ)ds(t).$$\begin{array}{c} \begin{array}{l}{u_x^b(t) =} &{{W^{ - 1}}\left\{ {{x_1} - R(b)(\phi (0) + F(0,\phi )) + F(b,{x_b}) - \int_0^b R (b - s)} \right.}\\ & \quad{\left. { \times \left[ {h(s,{x_s}) + l(s) + \int_0^s g (s,\tau ,{x_\tau })dw(\tau )} \right]ds} \right\}(t)}\end{array} \quad\\ \quad\\ \begin{array}{l}{u_x^b(t) = }& {{W^{ - 1}}\left\{ {{x_1} - R(b)[\phi (0) + F(0,\phi )] + F(b,{x_b}) - \int_0^b R (b - s)[h(s,{x_s}) + l(s)]ds }\right.}\\ &\quad{\left. { + \int_0^s g (s,\tau ,{x_\tau })dw(\tau )ds} \right\}(t).}\end{array} \end{array}$$

Let Bb$\begin{array}{} \displaystyle \mathfrak{B}_b \end{array}$ be the space of all functions x : (−∞, b] → H such that x0B$\begin{array}{} \displaystyle x_0 \in \mathfrak{B} \end{array}$ and the restriction x : JH is continuous.

Let ∥ ⋅ ∥b be the seminorm in Bb$\begin{array}{} \displaystyle \mathfrak{B}_b \end{array}$ defined by

xb=x0B+sup{x(s):0sb}, xBb$$\begin{array}{} \displaystyle \| x \|_b = \| x_0 \|_{\mathfrak{B}} + \sup\{ \| x(s)\| : 0\leq s\leq b\}, \quad x\in \mathfrak{B}_b \end{array}$$

Let Zb=C(J1,L2(Ω;Bb))$\begin{array}{} \displaystyle Z_b = C(J_1, L_2(\Omega; \mathfrak{B}_b)) \end{array}$. Consider the map Φ : ZbZb defined by

Φx(t)={ϕ(t),  iftJ0,R(t)[ϕ(0)+F(0,ϕ)]F(t,xt)+0tR(tη)Cuxb(η)dη  +0tR(ts)[h(s,xs)+l(s)+0tg(s,τ,xτ)]ds for a.etJ.$$\begin{array}{} \displaystyle \Phi x(t) = \left\{ \begin{array}{*{20}{l}} \phi (t),\qquad {\kern 1pt} \:{\rm{if}}\:\:t \in {J_0}, \\ R(t)[\phi (0) + F(0,\phi )] - F(t,{x_t}) + \int_0^t R (t - \eta )Cu_x^b(\eta )d\eta {\rm{ }} \\ \quad + \int_0^t R (t - s)\left[ {h(s,{x_s}) + l(s) + \int_0^t g (s,\tau ,{x_\tau })} \right]ds\quad {\text{for a.e}}\:t \in J. \\ \end{array}\right. \end{array}$$

We shall show that the operator Φ has a fixed point, which then is a solution of the system (1). Clearly, (Φx)(b) = x1.

For ϕZ, let y(⋅) : (−∞, b) → Zb be the function defined by

y(t)={ϕ(t)  ift(,0]R(t)ϕ(0)  iftJ.$$\begin{array}{} \displaystyle y(t) = \left\{ \begin{array}{*{20}{l}} \phi (t)\qquad {\kern 1pt} {\rm{if}}\:\:t \in ( - \infty ,0] \\ R(t)\phi (0)\qquad {\kern 1pt} {\rm{if}}\:\:t \in J. \\ \end{array}\right. \end{array}$$

Set x(t) = z(t) + y(t),−∞ < tb. It is clear that x satisfies (5) if and only if z satisfies z0 = 0 and

z(t)=R(t)F(0,ϕ)F(t,zt+yt)+0tR(tη)Cuz+yb(η)dη+0tR(ts)h(s,zs+ys)+l(s)+0sg(s,τ,xτ)dw(τ)ds,tJ,$$\eqalign {z(t) = & R(t)F(0,\phi ) - F(t,{z_t} + {y_t}) + \int_0^t R (t - \eta )Cu_{z + y}^b(\eta )d\eta \\ & \quad + \int_0^t R (t - s)\left[ {h(s,{z_s} + {y_s}) + l(s) + \int_0^s g (s,\tau ,{x_\tau })dw(\tau )} \right]ds,\quad t \in J,}$$

where

uz+yb(t)=W1{x1R(b)(ϕ(0)+F(0,ϕ))+F(b,zb+yb)0bR(bs)×[h(s,zs+ys)+l(s)+0sg(s,τ,zτ+yτ)dw(τ)]ds}(t).$$\begin{array}{} \displaystyle u_{z + y}^b(t) = {W^{ - 1}}\left\{ {{x_1} - R(b)(\phi (0) + F(0,\phi )) + F(b,{z_b} + {y_b}) - \int_0^b R (b - s)} \right.\left. \\ \qquad \qquad { \times \left[ {h(s,{z_s} + {y_s}) + l(s) + \int_0^s g (s,\tau ,{z_\tau } + {y_\tau })dw(\tau )} \right]ds} \right\}(t). \end{array}$$

Let

Bb0={zBb:z0=0B}$$\begin{array}{} \displaystyle \mathfrak{B}_b^0= \{ z\in \mathfrak{B}_b :z_0=0 \in \mathfrak{B} \} \end{array}$$

For any zBb0$\begin{array}{} \displaystyle z\in \mathfrak{B}_b^0 \end{array}$, we have

zb=z0b+sup{z(s):0sb}={sup{z(s):0sb}$$\begin{array}{} \displaystyle \| z \|_b= \| z_0\|_{\mathfrak{b}}+ \sup\{ \| z(s)\| :0\leq s \leq b\}= \{\sup \{ \| z(s) \|: 0\leq s \leq b \} \end{array}$$

Thus if Z0b=C(J1,L2(Ω;B0b)$\begin{array}{} \displaystyle Z_0^b = C(J_1, L_2(\Omega; \mathfrak{B}_0^b) \end{array}$, then (Z0b,·b)$\begin{array}{} \displaystyle (Z^b_0, \| \cdot \|_b) \end{array}$ is a Banach space. Set

Bq={zZb0:zb2q} for someq0;$$\begin{array}{} \displaystyle B_q= \{z \in Z_b^0 : \| z \|^2_b \leq q \}\quad \text{for some}\;\; q\geq 0; \end{array}$$

then BqZb0$\begin{array}{} \displaystyle B_q \subseteq Z_b^0 \end{array}$ is uniformly bounded. For z(⋅) ∊ Bq, from axiom (ai) and hypothesis (H8), we remark that

zt+ytϕB2 4(ztB2+ytϕB2)4(Γ¯2q+ε):=r,$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {{z_t} + {y_t} - \phi _\mathfrak{B}^2} \hfill & \le \hfill & {4({z_t}_\mathfrak{B}^2 + {y_t} - \phi _\mathfrak{B}^2)} \hfill \\ {} \hfill & \le \hfill & {4({{\overline \Gamma }^2}q + \varepsilon ): = r,} \hfill \\ \end{array} \end{array}$$

where ε=ytϕB2.$\begin{array}{} \displaystyle \,\varepsilon=\| y_t - \phi \|_{\mathfrak{B}}^2. \end{array}$

Thus, zt + ytBr[ϕ] for all 0 ≤ tb. Let the operator Q:Zb0Zb0$\begin{array}{} \displaystyle \mathscr{Q} : Z_b^0 \rightarrow Z_b^0 \end{array}$ be defined by Qz$\begin{array}{} \displaystyle \mathscr{Q}z \end{array}$, by

Qz(t)={0  tJ0R(t)F(0,ϕ)F(t,zt+yt)+0tR(tη)Cuz+yb(η)dη +0tR(ts)[h(s,zs+ys)+l(s)+0sg(s,τ,zτ+yτ)dw(τ)]ds, tJ.$$\begin{array}{} \displaystyle {\mathscr {Q}}z(t) = \left\{ \begin{array}{*{20}{l}} 0\qquad {\kern 1pt} t \in {J_0} \\ R(t)F(0,\phi ) - F(t,{z_t} + {y_t}) + \int_0^t R (t - \eta )Cu_{z + y}^b(\eta )d\eta \\ \quad + \int_0^t R (t - s)\left[ {h(s,{z_s} + {y_s}) + l(s) + \int_0^s g (s,\tau ,{z_\tau } + {y_\tau })dw(\tau )} \right]ds,\quad t \in J. \\ \end{array}\right. \end{array}$$

Obviously, the operator Φ has a fixed point is equivalently to prove that Q$\begin{array}{} \displaystyle \mathscr{Q} \end{array}$ has a fixed point. For each positive number q, let

Bq={zZb0:z(0)=0,zb2q,0tb}  for someq0$$\begin{array}{} \displaystyle B_q= \{z \in Z_b^0 :z(0)=0, \| z\|^2_b \leq q, 0 \leq t \leq b \}\quad \text{ for some}\;\; q\geq 0 \end{array}$$

then for each q, BqZb0$\begin{array}{} \displaystyle B_q \subseteq Z_b^0 \end{array}$ is clearly a bounded closed convex set. In addition to the familiar Young, Hölder, and Minkowskii inequalities, the inequality of the form (Σi=1nai)mnmΣi=1naim$\begin{array}{} \displaystyle {\left( {\Sigma _{i = 1}^n{a_i}} \right)^m} \le {n^m}\Sigma _{i = 1}^na_i^m \end{array}$ where ai are nonnegative constants (i = 1, 2,...,n) and m,n$\begin{array}{} \displaystyle m, n \in \mathbb{N} \end{array}$ is helpful to establishing various estimates. The Hölder inequality yields the following relation :

0tR(ts)h(s,zs+ys)ds2(bMMh)2.$$\begin{array}{} \displaystyle \| \int_0^t R(t-s) h(s, z_s + y_s)ds \|^2 \leq (bMM_{h})^{2}. \end{array}$$

Similary from (H7) and together with the Ito’s formula, a computation can be performed to obtain the following:

   E0tR(ts)[0sg(s,τ,zτ+yτ)dw(τ)]ds2Tr(Q)M2b0t0sEg(s,τ,zτ+yτ)Q2dτdsTr(Q)(M+Mg)2b3.$$\begin{array}{} \displaystyle \begin{array}{*{20}{l}} {\mathbb{E}\|\mathop \int\nolimits_0^t R(t - s)[\mathop \int\nolimits_0^s g(s,\tau ,{z_\tau } + {y_\tau })dw(\tau )]ds\|}{^2} \\ { \le Tr(Q){M^2}b\mathop \int\nolimits_0^t \mathop \int\nolimits_0^s \mathbb{E}\|g(s,\tau ,{z_\tau } + {y_\tau })\|_Q^2d\tau ds} \\ { \le Tr(Q){{(M + {M_g})}^2}{b^3}.} \end{array} \end{array}$$

Thus, Q$\begin{array}{} \displaystyle \mathscr{Q} \end{array}$ is well defined on Bq. Further noting that

Euz+yb2(6MW)x12+M2[Eϕ(0)2+EF(0,ϕ)2]+EF(b,zb+yb)F(b,yb)2+EF(b,yb)2+(3M)2b0tEh(s,zs+ys)2+El(s)2+0sEg(s,τ,zτ+yτ)2dτ(6MW)2x12+M2ϕ(0)B2+(MFΓ¯)2zbZ2+M¯F2+(3Mb)2(Mh2+M¯g2+Tr(Q)Mg2b).$$\begin{eqnarray*} \mathbb{E} \| u_{z+y}^b \|^2 &\leq &(6M_{W}) \left[ \| x_1 \|^2 + M^2 [\mathbb{E} \| \phi(0) \|^2 + \mathbb{E}\| F(0, \phi)\|^2 ]+ \mathbb{E}\| F(b,z_b+y_b)-F(b,y_b)\|^2\right.\\ & & +\mathbb{E}\| F(b,y_b)\|^2+ ( 3M)^2 b \int_0^t \left\lbrace \mathbb{E} \| h(s, z_s +y_s)\|^2 + \mathbb{E} \| l(s) \|^2 \right.\\ & & \left. \left. \qquad \quad + \int_0^s \mathbb{E} \| g(s, \tau, z_\tau +y_\tau) \|^2 d\tau \right\rbrace \right]\\ &\leq & (6M_{W})^2 \left[ \| x_1 \|^2 + M^2 \| \phi(0)\|^2_{\mathfrak{B}} + (M_{F}\overline{\Gamma})^{2}\|z_{b}\|_{Z}^{2} +\overline{M}^{2}_{F} \right.\\ & & \left. + (3Mb)^2 (M_h^2 + \overline{M}_g^2+ Tr(Q)M_g^2 b) \right]. \end{eqnarray*}$$

Thus

uz+ybZ2(6MW)2[x12+M2ϕ(0)Z2+(MFΓ¯)2q+M¯F2+(3Mb)2(Mh2+M¯g2+Mg2b2)]:=G.$$\begin{array}{} \displaystyle \| u_{z+y}^b \|_{Z}^2 \leq(6M_{W})^2 \left[ \| x_1 \|^2 + M^2 \| \phi(0)\|^2_{Z} + (M_{F}\overline{\Gamma})^{2}q +\overline{M}^{2}_{F} + (3Mb)^2 (M_h^2 + \overline{M}_g^2+ M_g^2 b^2) \right]:= \mathbb{G}. \end{array}$$

Also let

(6MW)2[x12+M2ϕ(0)Z2+M¯F2+(3Mb)2(Mh2+M¯g2+Mg2b2)]:=G.$$\begin{array}{} \displaystyle {(6{M_W})^2}[{x_1}{^2} + {M^2}\phi (0)_Z^2 + \overline M _F^2 + {(3Mb)^2}(M_h^2 + \overline M _g^2 + M_g^2{b^2})]: = {\mathbb{G}^\prime }. \end{array}$$

Next, we will show that the operator Q$\begin{array}{} \displaystyle \mathscr{Q} \end{array}$ has a fixed point on Bq, which implies equation (1) has a mild solution. To this end, we decompose Q$\begin{array}{} \displaystyle \mathscr{Q} \end{array}$ as Q=Q1+Q2$\begin{array}{} \displaystyle \mathscr{Q} = \mathscr{Q}_1 + \mathscr{Q}_2 \end{array}$, where the operators Q1,Q2$\begin{array}{} \displaystyle \mathscr{Q}_1, \mathscr{Q}_2 \end{array}$ are defined on Bq, respectively, by

(Q1z)(t)=R(t)F(0,ϕ)+F(t,zt+yt)$$\begin{array}{} \displaystyle (\mathscr{Q}_1 z)(t)= R(t)F(0,\phi)+ F(t, z_t +y_t) \end{array}$$

and

(Q2z)(t)=0tR(tη)Cuz+yb(η)dη+0tR(ts){h(s,zs+ys)+l(s)+0sg(s,τ,zτ+yτ)dw(τ)}ds,$$\begin{array}{} \displaystyle ({{\mathscr Q}_2}z)(t) = \int_0^t R (t - \eta )Cu_{z + y}^b(\eta )d\eta + \int_0^t R (t - s)\left\{ {h(s,{z_s} + {y_s}) + l(s) + \int_0^s g (s,\tau ,{z_\tau } + {y_\tau })dw(\tau )} \right\}ds, \end{array}$$

for tJ. In order to apply the Nussbaum fixed point theorem for the operator Q$\begin{array}{} \displaystyle \mathscr{Q} \end{array}$, we prove the following assertions:

Q1$\begin{array}{} \displaystyle \mathscr{Q}_1 \end{array}$ and Q2$\begin{array}{} \displaystyle \mathscr{Q}_2 \end{array}$ are well defined;

Q1$\begin{array}{} \displaystyle \mathscr{Q}_1 \end{array}$ satisfies contractive condition;

Q2$\begin{array}{} \displaystyle \mathscr{Q}_2 \end{array}$ is relatively compact;

QBqBq$\begin{array}{} \displaystyle \mathscr{Q} B_q \subset B_q \end{array}$

Now, for 0 ≤ tb,

EQ1z)(t)216ER(t)F(0,ϕ)2+F(t,yt)F(t,zt+yt)2+F(t,yt)216M2MF2+MF2ztB2+M¯F216M2MF2+MF2Γ¯2q+M¯F2$$\begin{eqnarray*} \mathbb{E} \| \mathscr{Q}_1 z)(t)\|^2 &\leq & 16\mathbb{E}\left\lbrace \|R(t)F(0,\phi)\|^2 +\| F(t,y_t)- F(t,z_t +y_t)\|^2 +\|F(t,y_t)\|2 \right\rbrace \\ % & & \quad & & \quad \leq 16\left\lbrace M^2 M^2_F+ M_F^2 \| z_t \|^2_{\mathfrak{B}} +\overline{M}^{2}_{F}\right\rbrace\\ & & \quad \leq 16\left\lbrace M^2 M^2_F+ M_F^2 \overline{\Gamma}^2 q+\overline{M}^{2}_{F} \right\rbrace \end{eqnarray*}$$

and

E(Q2z)(t)216b0tR(tη)2C2Euz+yb2dη+0tR(ts)2Eh(s,zs+ys)2ds+0tR(ts)2El(s)2+Tr(Q)0tR(ts)20sEg(s,τ,zτ+yτ)2dτds(4Mb)2[MC2G+Mh2+M¯g2+Tr(Q)bMg2+(6MWMCMFΓ¯)2q].$$\begin{eqnarray*} \mathbb{E}\| (\mathscr{Q}_2 z)(t) \|^2 & \leq &16b \left\lbrace \int_0^t \| R(t-\eta)\|^2 \| C \|^2 \mathbb{E} \| u_{z+y}^b\|^2 d \eta \right. \\ & & \qquad \quad + \int_0^t \| R(t-s)\|^2 \mathbb{E} \| h(s, z_s+y_s)\|^2 ds\\ & & \qquad \quad + \int_0^t \| R(t-s)\|^2 \mathbb{E}\| l(s) \|^2\\ & & \left. \qquad \quad + Tr(Q)\int_0^t \| R(t-s)\|^2 \int_0^s \mathbb{E} \| g(s, \tau, z_\tau +y_\tau)\|^2 d \tau ds \right\rbrace \\ &\leq & (4Mb)^2[M^2_C \mathbb{G}^{'}+ M_h^2+ \overline{M}_g^2+ Tr(Q)bM^2_g +(6M_{W}M_{C}M_{F}\overline{\Gamma})^{2}q]. \end{eqnarray*}$$

Thus, we have

(Qz)(t)Z24E(Q1z)(t)2+4(Q2z)(t)264[{1+(6MWMCMb)2}(MFΓ¯)2q+M2M¯F2+M¯F2+.(Mb)2[MC2G+Mh2+M¯g2+Tr(Q)bMg2]].$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {({\mathscr Q}z)(t)_Z^2} \hfill & \le \hfill & {4({{\mathscr Q}_1}z)(t){^2} + 4({{\mathscr Q}_2}z)(t){^2}} \hfill \\ {} \hfill & \le \hfill & {64[\{ 1 + {{(6{M_W}{M_C}Mb)}^2}\} {{({M_F}\overline \Gamma )}^2}q + {M^2}\overline M _F^2 + \overline M _F^2} \hfill \\ {} \hfill & + \hfill & {{{(Mb)}^2}[M_C^2\mathbb{E}' + M_h^2 + \overline M _g^2 + Tr(Q)bM_g^2]].} \hfill \\ \end{array} \end{array}$$

Hence QBqBq$\begin{array}{} \displaystyle \mathscr{Q}B_q \subseteq B_q \end{array}$. Next, we shall prove that the operator Q1$\begin{array}{} \displaystyle \mathscr{Q}_1 \end{array}$ satisfies the Lipschitz condition, we take z(1), z(2)Bq, then for each tJ and by condition (H3), equations (3.3) and (3.5), we have

E(Q1z(1))(t)(Q1z(2))(t)2EF(t,zt(1)+yt)F(t,zt(2)+yt)2MF2Ezt(1)zt(2)B2L0sup0sbz(1)(s)z(2)(s)B2.$$\begin{eqnarray*} & &\mathbb{E} \| (\mathscr{Q}_1 z^{(1)})(t) - (\mathscr{Q}_1 z^{(2)})(t) \|^2 \\ & & \leq \mathbb{E} \| F(t, z^{(1)}_t +y_t)- F(t, z^{(2)}_t +y_t) \|^2\\ & & \leq M_F^2 \mathbb{E} \| z^{(1)}_t - z^{(2)}_t \|^2_{\mathfrak{B}}\\ & & \leq L_0 \sup_{0 \leq s \leq b} \| z^{(1)}(s) -z^{(2)}(s) \|^2_{\mathfrak{B}}. \end{eqnarray*}$$

Thus,

Q1z(1)Q1z(2)Z2L0z(1)z(2)Z2$$\begin{array}{} \displaystyle \| \mathscr{Q}_1 z^{(1)} - \mathscr{Q}_1 z^{(2)} \|^2_Z \leq L_0 \| z^{(1)} -z^{(2)} \|^2_Z \end{array}$$

and so Q1$\begin{array}{} \displaystyle \mathscr{Q}_1 \end{array}$ satisfies Lipschitz condition with L0 < 1.

Finally, we prove that Q2$\begin{array}{} \displaystyle \mathscr{Q}_2 \end{array}$ is relatively compact in Bq. To prove this, first we shall show that Q2$\begin{array}{} \displaystyle \mathscr{Q}_2 \end{array}$ maps Bq into a precompact subset of Q$\begin{array}{} \displaystyle \mathscr{Q} \end{array}$. We now show that for every fixed tJ the set V(t)={(Q2z)(t):zBq}$\begin{array}{} \displaystyle V (t)= \{ (\mathscr{Q}_2z)(t) : z \in B_q\} \end{array}$ is precompact in H.

Obviously for t = 0, V(0)={Q(0)}$\begin{array}{} \displaystyle V(0)= \{ \mathscr{Q}(0)\} \end{array}$. Let 0 < tb be fixed and ε be a real number satisfying ε ∊ (0, t). For zBq, we define the operators

(Q2εz)(t)=R(ε)0tεR(tεη)Cuz+yb(η)dη+R(ε)0tεR(tεs)×h(s,zs+ys)+l(s)+0sg(s,τ,zτ+yτ)dw(τ)ds.$$\begin{eqnarray*} (\mathscr{Q}_2^{*\varepsilon} z)(t)&=& R(\varepsilon) \int_0^{t-\varepsilon} R(t- \varepsilon -\eta)C u_{z+y}^b(\eta)d\eta + R(\varepsilon) \int_0^{t-\varepsilon} R(t-\varepsilon -s) \\ & & \quad \times \left[ h(s, z_s +y_s)+l(s)+ \int_0^s g(s, \tau, z_\tau + y_\tau)dw(\tau) \right] ds. \end{eqnarray*}$$

and

(Q~2εz)(t)=0tεR(tη)Cuz+yb(η)dη+0tεR(ts)h(s,zs+ys)+l(s)+0sg(s,τ,zτ+yτ)dw(τ)ds=R(ε)0tεR(tεη)Cuz+yb(η)dη+R(ε)0tεR(tεs)×h(s,zs+ys)+l(s)+0sg(s,τ,zτ+yτ)dw(τ)ds.$$\begin{eqnarray*} (\mathscr{\tilde{Q}}_2^\varepsilon z)(t)&=& \int_0^{t-\varepsilon} R(t-\eta) Cu_{z+y}^b(\eta)d \eta \\ & & \quad + \int_0^{t-\varepsilon} R(t-s) \left[ h(s, z_s +y_s)+l(s)+ \int_0^s g(s, \tau, z_\tau + y_\tau)dw(\tau) \right] ds\\ &=& R(\varepsilon) \int_0^{t-\varepsilon} R(t- \varepsilon -\eta)C u_{z+y}^b(\eta)d\eta + R(\varepsilon) \int_0^{t-\varepsilon} R(t-\varepsilon -s) \\ & & \quad \times \left[ h(s, z_s +y_s)+l(s)+ \int_0^s g(s, \tau, z_\tau + y_\tau)dw(\tau) \right] ds. \end{eqnarray*}$$

By Lemma 2 and the compactness of the operator R(ε), the set Vε*(t)={(Q2*εz)(t):zBq}$\begin{array}{} \displaystyle V_\varepsilon ^*(t) = \{ (\mathfrak{Q}_2^{*\varepsilon }z)(t):z \in {B_q}\} \end{array}$ is relatively compact in H, for every ε, ε ∊ (0; t). Moreover, also by Lemma 2, Hölder’s inequality, for each zBq, we obtain

E(Q2εz)(t)(Q~2εz)(t)24b0tεR(ε)R(tηε)R(tη)2Euz+yb(η)2dη+36b0tεR(ε)R(tsε)R(ts)2Eh(s,zs+ys)2+El(s)2+Tr(Q)0sEg(s,τ,zτ+yτ)2dτds4b(εL)20tεEuz+yb(η)2dη+36(εL)20tεEh(s,zs+ys)2+El(s)2+Tr(Q)0sEg(s,τ,zτ+yτ)2dτds.$$\begin{eqnarray*} & &\mathbb{E} \| (\mathscr{Q}_2^{* \varepsilon }z)(t)-(\mathscr{\tilde{Q}}_2^{\varepsilon} z)(t) \|^2\\ & & \quad \leq 4b\int_{0}^{t-\varepsilon}\| R(\varepsilon)R(t-\eta-\varepsilon)-R(t-\eta)\|^2 \mathbb{E} \| u_{z+y}^b(\eta)\|^2 d \eta\\ & & \qquad + 36b \int_{0}^{t-\varepsilon} \| R(\varepsilon)R(t-s-\varepsilon)-R(t-s)\|^2 \left\lbrace \mathbb{E} \| h(s, z_s +y_s)\|^2\right. \\ & & \left. +\mathbb{E}\| l(s) \|^2+ Tr(Q)\int_0^s \mathbb{E}\| g(s, \tau, z_\tau + y_\tau)\|^2 d\tau\right\rbrace ds\\ & & \leq 4b (\varepsilon L)^{2}\int_{0}^{t-\varepsilon} \mathbb{E} \| u_{z+y}^b(\eta)\|^2 d \eta\\ & & + 36(\varepsilon L)^{2} \int_{0}^{t-\varepsilon} \left\lbrace \mathbb{E} \| h(s, z_s +y_s)\|^2\right. \\ & & \left. +\mathbb{E}\| l(s) \|^2+ Tr(Q)\int_0^s \mathbb{E}\| g(s, \tau, z_\tau + y_\tau)\|^2 d\tau\right\rbrace ds. \end{eqnarray*}$$

We obtain that the set V˜ε*(t)={(Q˜2*εz)(t):zBq}$\begin{array}{} \displaystyle \,\,\tilde{V}^{*}_{\varepsilon} (t)= \{ (\mathscr{\tilde{Q}}^{*\varepsilon}_2z)(t) : z \in B_q\} \end{array}$ is precompact in H by using the total boundedness.

Applying this idea again, we obtain

E(Q2z)(t)(Q~2εz)(t)(2MMCε)2G+4εM2tεt9{Mh2+M¯g2+Tr(Q)bMg2}(2Mε)2GMC2+9(Mh2+M¯g2+Tr(Q)bMg2)0,$$\begin{eqnarray*} \mathbb{E} \| (\mathscr{Q}_2 z)(t)-(\mathscr{\tilde{Q}}_2^\varepsilon z)(t) \| &\leq & (2MM_C \varepsilon)^2 \mathbb{G} + 4 \varepsilon M^2 \int_{t-\varepsilon}^t 9\lbrace M_h^2 +\overline{M}_g^2+ Tr(Q)bM^2_g \rbrace \\ &\leq & (2M \varepsilon)^2 \left[ \mathbb{G}M_C^2+ 9(M_h^2 +\overline{M}_g^2+ Tr(Q)bM^2_g)\right]\longrightarrow 0, \end{eqnarray*}$$

when ε → 0, and there are precompact sets arbitrarily close to the set {(Q2z)(t):zBq}$\begin{array}{} \displaystyle \, \{ (\mathscr{Q}_2z)(t) : z \in B_q\} \end{array}$. Thus the set {(Q2z)(t):zBq}$\begin{array}{} \displaystyle \,\{(\mathscr{Q}_2z)(t) : z \in B_q\}\, \end{array}$ is precompact in H.

We now show that the image of Bq,Q(Bq)={Qz:zBq}$\begin{array}{} \displaystyle B_q, \mathscr{Q}(B_{q} )= \{ \mathscr{Q}z : z \in B_q\} \end{array}$ is an equicontinuous family of functions. To do this, let ε > 0 small, 0 < t1 < t2, then from (10), we have

E(Q2z)(t1)(Q2z)(t2)236b0tεR(t2η)R(t2η)2ECuz+yb2dη+εtεt1R(t2η)R(t1η)2ECuz+yb2dη+(t2t1)t1t2R(t2η)2ECuz+yb2dη+9b0t1εR(t2s)R(t1s)2ECuz+yb2Eh(s,xs)+l(s)+Tr(Q)0sEg(s,τ,xτ)dτds+9εt1εt1R(t2s)R(t1s)2ECuz+yb2Eh(s,xs)+l(s)+Tr(Q)0sEg(s,τ,xτ)dτds+9(t2t1)t1t2R(t2s)2ECuz+yb2Eh(s,xs)+l(s)+Tr(Q)0sEg(s,τ,xτ)dτds.$$\begin{eqnarray*} & &\mathbb{E}\| (\mathscr{Q}_2 z)(t_1)- (\mathscr{Q}_2 z)(t_2) \|^2 \\ & &\quad \leq 36 \left\lbrace b \int_0^{t-\varepsilon}\| R(t_2-\eta)- R(t_2-\eta)\|^2 \mathbb{E}\| Cu_{z+y}^b\|^2 d \eta \right.\\ & & \quad + \varepsilon \int_{t-\varepsilon}^{t_1} \| R(t_2-\eta)- R(t_1-\eta)\|^2 \mathbb{E}\| Cu_{z+y}^b\|^2 d \eta +(t_2 - t_1) \int_{t_1}^{t_2} \| R(t_2-\eta)\|^2 \mathbb{E}\| Cu_{z+y}^b\|^2 d \eta\\ & & \quad +9b\int_0^{t_1 -\varepsilon}\| R(t_2-s)- R(t_1-s)\|^2 \mathbb{E}\| Cu_{z+y}^b\|^2 \left[ \mathbb{E}\| h(s,x_s)+ l(s) + Tr(Q)\int_0^s \mathbb{E} \| g(s, \tau, x_\tau)d\tau \right]ds\\ & &\quad +9\varepsilon \int_{t_1 -\varepsilon}^{t_1} \| R(t_2-s)- R(t_1-s)\|^2 \mathbb{E}\| Cu_{z+y}^b\|^2 \left[ \mathbb{E}\| h(s,x_s)+ l(s) + Tr(Q)\int_0^s \mathbb{E} \| g(s, \tau, x_\tau)d\tau \right]ds\\ & &\quad \left. +9(t_2 -t_1)\int_{t_1}^{t_2}\| R(t_2-s)\|^2 \mathbb{E}\| Cu_{z+y}^b\|^2 \left[ \mathbb{E}\| h(s,x_s)+ l(s) + Tr(Q)\int_0^s \mathbb{E} \| g(s, \tau, x_\tau)d\tau \right]ds. \right\rbrace \\ \end{eqnarray*}$$

That is,

(Q2z)(t1)(Q2z)(t2)Z236bMC2G0t1εR(t2η)R(t1η)2dη+εMC2Gt1εt1R(t2η)R(t1η)2dη+(t2t1)MC2Gt1t2R(t2η)2dη+9bMh2+M¯g2+Tr(Q)bMg20t1εR(t2s)R(t1s)2ds+9εMh2+M¯g2+Tr(Q)bMg2t1εt1R(t2s)R(t1s)2ds+9(t2t1)Mh2+M¯g2+Tr(Q)bMg2t1t2R(t2s)R(t1s)2ds.$$\begin{eqnarray*} & &\| (\mathscr{Q}_2 z)(t_1)- (\mathscr{Q}_2 z)(t_2) \|^2_Z\\ & &\quad 36 \left\lbrace bM_C^2 \mathbb{G} \int_0^{t_1 -\varepsilon} \| R(t_2 -\eta)- R(t_1 -\eta) \|^2 d\eta + \varepsilon M_C^2 \mathbb{G} \int_{t_1- \varepsilon}^{t_1} \| R(t_2 -\eta)- R(t_1 -\eta) \|^2 d\eta \right.\\ & &\quad +(t_2 -t_1)M^2_C \mathbb{G} \int_{t_1}^{t_2} \| R(t_2 -\eta)\|^2 d \eta\\ & &\quad +9b \left[ M_h^2+ \overline{M}_g^2+ Tr(Q)bM^2_g\right]\int_0^{t_1 -\varepsilon} \| R(t_2 -s) -R(t_1 -s)\|^2 ds\\ & &\quad +9\varepsilon \left[ M_h^2+ \overline{M}_g^2+ Tr(Q)bM^2_g\right]\int_{t_1 -\varepsilon}^{t_1} \| R(t_2 -s) -R(t_1 -s)\|^2 ds\\ & &\quad \left. +9 (t_2 -t_1)\left[ M_h^2+ \overline{M}_g^2+ Tr(Q)bM^2_g\right]\int_{t_1}^{t_2} \| R(t_2 -s) -R(t_1 -s)\|^2 ds \right\rbrace. \end{eqnarray*}$$

we see that (Q2z)(t1)(Q2z)(t2)Z2$\begin{array}{} \displaystyle \|( \mathscr{Q}_2z)(t_1) - (\mathscr{Q}_2z)(t2)\|^2_Z \end{array}$ tends to zero independently of zBq as t2t1, with ε sufficiently small since the compactness of T (t) for t > 0 implies the continuity in the uniform operator topology. Hence, Q2$\begin{array}{} \displaystyle \mathscr{Q}_2 \end{array}$ maps Bq into a equicontinuous family of functions.

Also Q2(Bq)$\begin{array}{} \displaystyle \mathscr{Q}_2(B_q) \end{array}$ is bounded in Z and so by the Arzela–Ascoli theorem, Q2(Bq)$\begin{array}{} \displaystyle \mathscr{Q}_2(B_q) \end{array}$ is precompact. Hence it follows from the Nussbaum fixed point theorem there exists a fixed point z(⋅) for Q$\begin{array}{} \displaystyle \mathscr{Q} \end{array}$ on Bq such that Qz(t)=z(t)$\begin{array}{} \displaystyle \mathscr{Q}z(t)=z(t) \end{array}$. Since we have x(t) = z(t) + y(t), it follows that x(t) is a mild solution of (1) on J satisfying x(b) = x1. Thus the system (1) is controllable on J.

Example

In this section an example is presented for the controllability results to the following partial neutral stochastic integrodifferential equation:

d[ν(t,x)+t0πμ1(st,y,x)ν(s,y)dyds]  =2x2[ν(t,x)+t0πμ1(st,y,x)ν(s,y)dyds]dt  +0tγ(ts)[ν(s,x)+s0πμ1(τs,y,x)ν(τ,y)dydτ]ds  +μ3(x)ν(t,x)+c(x)u(t)dt+tμ2(st)ν(s,x)dw(s),oxπ,tJ=[0,b],ν(t,0)=ν(t,π)=0, t0,ν(t,x)=ϕ(t,x), tJ0, 0xπ.$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {d\left[ {\nu (t,x) + \int_{ - \infty }^t {\int_0^\pi {{\mu _1}} } (s - t,y,x)\nu (s,y)dyds} \right]} \hfill \\ {{\rm{ }} = \frac{{{\partial ^2}}}{{\partial {x^2}}}\left[ {\nu (t,x) + \int_{ - \infty }^t {\int_0^\pi {{\mu _1}} } (s - t,y,x)\nu (s,y)dyds} \right]dt} \hfill \\ {{\rm{ }} + \int_0^t \gamma (t - s)\left[ {\nu (s,x) + \int_{ - \infty }^s {\int_0^\pi {{\mu _1}} } (\tau - s,y,x)\nu (\tau ,y)dyd\tau } \right]ds} \hfill \\ {{\rm{ }} + {\mu _3}(x)\nu (t,x) + c(x)u(t)dt + \int_{ - \infty }^t {{\mu _2}} (s - t)\nu (s,x)dw(s),\:\:\:o \le x \le \pi ,\:\:t \in J = [0,b],} \hfill \\ {\nu (t,0) = \nu (t,\pi ) = 0,\quad t \ge 0,} \hfill \\ {\nu (t,x) = \phi (t,x),\quad t \in {J_0},\quad 0 \le x \le \pi .} \hfill \\ \end{array} \end{array}$$

where w(t) denotes an ℝ-valued Brownian motion.

To rewrite (12) into the abstract form of (1), we consider H = K = U = L2([0, π]) with the norm ∥⋅∥. Let en:=2πsin(nx),$\begin{array}{} \displaystyle \,\, e_{n}:=\sqrt{\frac{2}{\pi} }\sin(nx),\; \end{array}$, (n = 1, 2, 3, ···) denote the completed orthonormal basis in H and w:=Σn=1λnβn(t)en(λn>0)$\begin{array}{} \displaystyle {\kern 1pt} {\kern 1pt} w: = \Sigma _{n = 1}^\infty \sqrt {{\lambda _n}} {\beta _n}(t){e_n}({\lambda _n} > 0) \end{array}$, where βn(t) are one dimensional standard Brownian motion mutually independent on a usual complete probability space (Ω,,{t}t0,).$\begin{array}{} \displaystyle (\Omega ,{\mathscr F},{\{ {{\mathscr F}_t}\} _{t \ge 0}},). \end{array}$

Define A : HH by A=2z2,$\begin{array}{} \displaystyle \,A=\frac{\partial^{2}}{\partial z^{2}},\, \end{array}$, with domain D(A)=H2([0,π])H01([0,π])$\begin{array}{} \displaystyle D(A)=H^{2}([0,\pi])\cap H_{0}^{1}([0,\pi])\, \end{array}$ where

H01([0,π]={δL2([0,π]):δlL2([0,π]),δ(0)=δ(π)=0}$$\begin{array}{} \displaystyle H_{0}^{1}([0,\pi]=\{\delta \in L^{2}([0,\pi])\,:\,\frac{\partial \delta}{\partial l}\in L^{2}([0,\pi]), \delta(0)=\delta(\pi)=0\} \end{array}$$

and

H2([0,π]={δL2([0,π]):δl,2δlL2([0,π]),δ(0)=δ(π)=0}.$$\begin{array}{} \displaystyle H^{2}([0,\pi]=\{\delta \in L^{2}([0,\pi])\,:\,\frac{\partial \delta}{\partial l}, \frac{\partial^{2} \delta}{\partial l} \in L^{2}([0,\pi]), \delta(0)=\delta(\pi)=0\}. \end{array}$$

Then Ah=Σn=1n2<h,en>en,hD(A),$\begin{array}{} \displaystyle Ah = - \Sigma _{n = 1}^\infty {n^2} \lt \ h,{e_n} \gt {e_n},\:\:\:h \in D(A)\ , \end{array}$, where en, n = 1, 2, 3, ···, is also the orthonormal set of eigenvectors of A.

It is well-known that A is the infinitesimal generator of a strongly continuous semigroup on H, thus (H1) is true.

Let B : D(A) ⊂ HH be the operator defined by B(t)(z) = γ(t)Az for t ≥ 0 and zD(A).

Here we take the phase space B=C0×L2(q;H)$\begin{array}{} \displaystyle \mathfrak{B}= C_0 \times L^2(q; H) \end{array}$, which contains all classes of functions ϕ : J0H such that ϕ is F0$\begin{array}{} \displaystyle \mathfrak{F}_0 \end{array}$-measurable and q(⋅)∥ϕ(⋅)∥2 is integrable on J0 where q : (−∞, 0) → ℝ is a positive integrable function. The seminorm in B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$ is defined by

ϕ=ϕ(0)+(tq(θ)ϕ(θ)2dθ)12.$$\begin{array}{} \displaystyle \| \phi \| =\| \phi(0)\|+ \left( \int_{-\infty}^t q(\theta)\| \phi(\theta)\|^2 d\theta \right)^{\frac{1}{2}}. \end{array}$$

The general form of phase space B=Cr×Lp(q;H),r0,1p<$\begin{array}{} \displaystyle \mathfrak{B}= C_r \times L^p(q; H), r\geq 0, 1\leq p<\ \infty \end{array}$ has been discussed in Hino et al. [15] (here in particular, we are taking r=0, p= 2). From Hino et al. [15], under some conditions, (B,ϕB)$\begin{array}{} \displaystyle (\mathfrak{B}, \|\phi \|_{\mathfrak{B}}) \end{array}$ is a Banach space that satisfies (i)-(iii) with

Γ(t)=1+(t0q(θ)dθ)12.$$\begin{array}{} \displaystyle \Gamma(t)=1+\left(\int_{-t}^{0}q\left(\theta\right)d\theta\right)^{\frac{1}{2}}. \end{array}$$

We assume the following conditions hold for system (12)

The function μ1(⋅) is Ft$\begin{array}{} \displaystyle \mathfrak{F}_t \end{array}$-measurable and

0π00πμ12(θ,y,x)/q(θ))dydθdx<$$\begin{array}{} \displaystyle \int_0^\pi \int_{-\infty}^0 \int_0^\pi \mu_1^2(\theta, y, x)/q(\theta))dyd \theta dx <\infty \end{array}$$

The function μ2(⋅) is Ft$\begin{array}{} \displaystyle \mathfrak{F}_t \end{array}$-measurable with

0(μ22(θ)/q(θ))dθ<.$$\begin{array}{} \displaystyle \int\nolimits _{ - \infty }^0\left( {\mu _2^2\left( \theta \right)/q\left( \theta \right)} \right)d\theta <\ \infty . \end{array}$$

The function ϕ defined by ϕ(θ)(x) = ϕ(θ, x) belongs to B$\begin{array}{} \displaystyle \mathfrak{B} \end{array}$.

C : L2([0, π]) → H is a bounded linear operator defined by

Cu(x)=c(x)u, 0xπ, u, uL2([0,π]).$$\begin{array}{} \displaystyle Cu(x)=c(x)u, \quad 0\leq x \leq \pi,\quad u\in \mathbb{R}, \quad u \in L_2([0,\pi]). \end{array}$$

The linear operator W : L2(J, U) → H defined by

Wu=0bR(bs)c(x)u(s)ds$$\begin{array}{} \displaystyle Wu= \int_0^b R(b-s)c(x)u(s)ds \end{array}$$

has an induced inverse operator W−1 defined on L2(J, ℝ)/kerW and satisfies condition (H4).

Now, define the operators F:[0,)×FH,G:[0,)×BL(K,H)andh:[0,)×BH$\begin{array}{} \displaystyle F:[0,\infty ) \times \mathfrak{F} \to H,G:[0,\infty ) \times \mathfrak{B} \to L(K,H)andh:[0,\infty ) \times \mathfrak{B} \to H \end{array}$ respectively, as

F(t,ϕ)=Ψ1(ϕ)=00πμ1(θ,y,x)ϕ(θ,y)dydθ,G(t,ϕ)=Ψ2(ϕ)=0μ2(θ)ϕ(θ,x)dθh(t,ϕ)=Ψ3(ϕ)=μ3(x)ϕ(θ,x).$$\begin{array}{} \displaystyle \begin{array}{*{20}{c}} {F(t,\phi ) = {\Psi _1}(\phi ) = \int_{ - \infty }^0 {\int_0^\pi {{\mu _1}} } (\theta ,y,x)\phi (\theta ,y)dyd\theta ,} \hfill \\ {G(t,\phi ) = {\Psi _2}(\phi ) = \int_{ - \infty }^0 {{\mu _2}} (\theta )\phi (\theta ,x)d\theta } \hfill \\ {h(t,\phi ) = {\Psi _3}(\phi ) = {\mu _3}(x)\phi (\theta ,x).} \hfill \\ \end{array} \end{array}$$

If we put

{x(t)   =ν(t,ξ)fort0andx[0,π]φ(θ)(ξ) =ν0(θ,ξ)forθ],0]andx[0,π].$\begin{array}{} \displaystyle \left\{ \begin{array}{*{20}{l}} x(t){\rm{ }} = \nu (t,\xi ){\kern 1pt} {\kern 1pt} {\rm{for}}{\kern 1pt} {\kern 1pt} t \ge 0{\kern 1pt} {\kern 1pt} {\rm{and}}\:\:x \in [0,\pi ] \\ \varphi (\theta )(\xi ){\rm{ }} = {\nu _0}(\theta ,\xi ){\kern 1pt} {\kern 1pt} {\rm{for}}{\kern 1pt} {\kern 1pt} \theta \in ] - \infty ,0]{\kern 1pt} {\kern 1pt} {\rm{and}}\:\:x \in [0,\pi ]. \\ \end{array}\right. \end{array}$

then, system (12) is the abstract formulation of the system (1).

{d[x(t)+F(t,xt)]=[A[x(t)+F(t,xt)]+0tB(ts)[x(s)+F(s,xs)]ds+Cu(t)+h(t,xt)]dt+tg(t,s,xs)dw(s),tJ:=[0,b],x(0)=ξ,$$\begin{array}{} \displaystyle \left\{ \begin{array}{*{20}{l}} d[x(t) + F(t,{x_t})] = \left[ {A[x(t) + F(t,{x_t})] + \int_0^t B (t - s)[x(s) + F(s,{x_s})]ds + Cu(t) + h(t,{x_t})} \right]dt \\ + \int_{ - \infty }^t g (t,s,{x_s})dw(s),\:\:t \in J: = [0,b], \\ x(0) = \xi , \\ \end{array}\right. \end{array}$$

We suppose γ is a bounded and C1 function such that γ is bounded and uniformly continuous, which implies that the operator B(t) satisfies (H2). Consequently by Theorem 1, we deduce that Eq. (2) has a resolvent operator (R(t))t≥0 on H. Moreover, for 0s1,s2b,ψ1,ψ2L2(J,B)$\begin{array}{} \displaystyle 0\le s_1,s_2 \leq b, \psi_1, \psi_2 \in L_2(J, \mathfrak{B}) \end{array}$, we have from (i) by using Hölder inequality the following estimation

F(s1,ψ1)F(s2,ψ2)[0π00πμ12(θ,y,x)/q(θ))dydθdx]12(|s1s2|+ψ1ψ2B).$$\begin{array}{} \displaystyle \| F(s_1, \psi_{1})- F(s_2, \psi_{2}) \| \leq \left[\int_0^\pi \int_{-\infty}^0 \int_0^\pi \mu_1^2(\theta, y, x)/q(\theta))dyd \theta dx\right]^{\frac{1}{2}}\left( | s_1 -s_2| + \| \psi_1 - \psi_2 \|_{\mathfrak{B}}\right). \end{array}$$

Similarly we can verify under conditions (ii) that F, G and h satisfy respectively the hypotheses (H6)-(H8). Therefore, under the above assumptions, the stated conditions of Theorem 7 are satisfied, the system (12) is controllable on J.

eISSN:
2444-8656
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Life Sciences, other, Mathematics, Applied Mathematics, General Mathematics, Physics