Cite

Abdelfattah MS, Arai MA, Ishibashi M. 2016. Bioactive secondary metabolites with unique aromatic and heterocyclic structures obtained from terrestrial actinomycetes species. Chem Pharm Bull. 64:668–675.AbdelfattahMSAraiMAIshibashiM.2016Bioactive secondary metabolites with unique aromatic and heterocyclic structures obtained from terrestrial actinomycetes speciesChem Pharm Bull.6466867510.1248/cpb.c16-0003826936155Search in Google Scholar

Abdelkader MSA, Philippon T, Asenjo JA, Bull AT, Goodfellow M, Ebel R, Jaspars M, Rateb ME. 2018. Asenjonamides A-C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soil. J Antibiot (Tokyo). 71:425–431.AbdelkaderMSAPhilipponTAsenjoJABullATGoodfellowMEbelRJasparsMRatebME.2018Asenjonamides A-C, antibacterial metabolites isolated from Streptomyces asenjonii strain KNN 42.f from an extreme-hyper arid Atacama Desert soilJ Antibiot (Tokyo).7142543110.1038/s41429-017-0012-029362461Search in Google Scholar

Bae M, Kim H, Moon K, Nam S-J, Shin J, Oh K-B, Oh D-C. 2015. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org Lett. 17:712–715.BaeMKimHMoonKNamS-JShinJOhK-BOhD-C.2015Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyaseOrg Lett.1771271510.1021/ol503724825622093Search in Google Scholar

Baltz RH. 2011. Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol. 38(6):657–666.BaltzRH.2011Strain improvement in actinomycetes in the postgenomic eraJ Ind Microbiol Biotechnol.38(6):65766610.1007/s10295-010-0934-z21253811Search in Google Scholar

Barka EA, Vatsa P, Sanchez L, Gaveau-Vaillant N, Jacquard C, Klenk H-P, Clément C, Ouhdouch Y, van Wezel GP. 2016. Taxonomy, physiology, and natural products of Actinobacteria. Microbiol Mol Biol Rev. 80:1–43.BarkaEAVatsaPSanchezLGaveau-VaillantNJacquardCKlenkH-PClémentCOuhdouchYvan WezelGP.2016Taxonomy, physiology, and natural products of ActinobacteriaMicrobiol Mol Biol Rev.8014310.1128/MMBR.00019-15471118626609051Search in Google Scholar

Barrows NJ, Campos RK, Powell ST, Prasanth KR, Schott-Lerner G, Soto-Acosta R, Galarza-Muñoz G, McGrath EL, Urrabaz-Garza R, Gao J, et al. 2016. A Screen of FDA-approved drugs for inhibitors of Zika virus infection. Cell Host Microbe. 20:259–270.BarrowsNJCamposRKPowellSTPrasanthKRSchott-LernerGSoto-AcostaRGalarza-MuñozGMcGrathELUrrabaz-GarzaRGaoJ2016A Screen of FDA-approved drugs for inhibitors of Zika virus infectionCell Host Microbe.2025927010.1016/j.chom.2016.07.004499392627476412Search in Google Scholar

Blázquez A-B, Saiz J-C. 2016. Neurological manifestations of Zika virus infection. World J Virol. 5:135.BlázquezA-BSaizJ-C.2016Neurological manifestations of Zika virus infectionWorld J Virol.513510.5501/wjv.v5.i4.135510504627878100Search in Google Scholar

Bruntner C, Binder T, Pathom-aree W, Goodfellow M, Bull AT, Potterat O, Puder C, Hörer S, Schmid A, Bolek W, et al. 2005. Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from Antarctica. J Antibiot (Tokyo). 58:346–349.BruntnerCBinderTPathom-areeWGoodfellowMBullATPotteratOPuderCHörerSSchmidABolekW2005Frigocyclinone, a novel angucyclinone antibiotic produced by a Streptomyces griseus strain from AntarcticaJ Antibiot (Tokyo).5834634910.1038/ja.2005.4316060387Search in Google Scholar

Butler MS, Blaskovich MA, Cooper M. 2017. Antibiotics in the clinical pipeline at the end of 2015. J Antibiot (Tokyo). 70:3–24.ButlerMSBlaskovichMACooperM.2017Antibiotics in the clinical pipeline at the end of 2015J Antibiot (Tokyo).7032410.1038/ja.2016.7227353164Search in Google Scholar

Carlson S, Tanouye U, Omarsdottir S, Murphy BT. 2014. Phylumspecific regulation of resistomycin production in a Streptomyces sp. via microbial coculture. J Nat Prod. 78(3):381–387.CarlsonSTanouyeUOmarsdottirSMurphyBT.2014Phylumspecific regulation of resistomycin production in a Streptomyces sp. via microbial cocultureJ Nat Prod.78(3):38138710.1021/np500767u25537064Search in Google Scholar

Chater KF. 2016. Recent advances in understanding Streptomyces. F1000Research. 5:2795.ChaterKF.2016Recent advances in understanding StreptomycesF1000Research.5279510.12688/f1000research.9534.1513368827990276Search in Google Scholar

Chen C, Wang J, Guo H, Hou W, Yang N, Ren B, Liu M, Dai H, Liu X, Song F, Zhang L. 2013. Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061. Appl Microbiol Biotechnol. 97:3885–3892.ChenCWangJGuoHHouWYangNRenBLiuMDaiHLiuXSongFZhangL.2013Three antimycobacterial metabolites identified from a marine-derived Streptomyces sp. MS100061Appl Microbiol Biotechnol.973885389210.1007/s00253-012-4681-023324803Search in Google Scholar

Chen M-H, Chang S-S, Dong B, Yu L-Y, Wu Y-X, Wang R-Z, Jiang W, Gao Z-P, Si S-Y. 2018. Ahmpatinin i Bu, a new HIV-1 protease inhibitor, from Streptomyces sp. CPCC 202950. RSC Adv. 8:5138–5144.ChenM-HChangS-SDongBYuL-YWuY-XWangR-ZJiangWGaoZ-PSiS-Y.2018Ahmpatinin i Bu, a new HIV-1 protease inhibitor, from Streptomyces sp. CPCC 202950RSC Adv.85138514410.1039/C7RA13241G907812335542440Search in Google Scholar

Chen Y, Liu R-H, Li T-X, Huang S-S, Kong L-Y, Yang M-H. 2017. Enduspeptides A-F, six new cyclic depsipeptides from a coal mine derived Streptomyces sp. Tetrahedron. 73:527–531.ChenYLiuR-HLiT-XHuangS-SKongL-YYangM-H.2017Enduspeptides A-F, six new cyclic depsipeptides from a coal mine derived Streptomyces spTetrahedron.7352753110.1016/j.tet.2016.12.033Search in Google Scholar

Cheng C, Othman EM, Reimer A, Grüne M, Kozjak-Pavlovic V, Stopper H, Hentschel U, Abdelmohsen UR. 2016. Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345. Tetrahedron Lett. 57:2786–2789.ChengCOthmanEMReimerAGrüneMKozjak-PavlovicVStopperHHentschelUAbdelmohsenUR.2016Ageloline A, new antioxidant and antichlamydial quinolone from the marine sponge-derived bacterium Streptomyces sp. SBT345Tetrahedron Lett.572786278910.1016/j.tetlet.2016.05.042Search in Google Scholar

Cruz JCS, Maffioli SI, Bernasconi A, Brunati C, Gaspari E, Sosio M, Wellington E, Donadio S. 2017. Allocyclinones, hyperchlorinated angucyclinones from Actinoallomurus. J Antibiot (Tokyo). 70:73–78.CruzJCSMaffioliSIBernasconiABrunatiCGaspariESosioMWellingtonEDonadioS.2017Allocyclinones, hyperchlorinated angucyclinones from ActinoallomurusJ Antibiot (Tokyo).70737810.1038/ja.2016.6227220409Search in Google Scholar

Cumsille A, Undabarrena A, González V, Claverías F, Rojas C, Cámara B. 2017. Biodiversity of Actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profiling. Mar Drugs. 15:286.CumsilleAUndabarrenaAGonzálezVClaveríasFRojasCCámaraB.2017Biodiversity of Actinobacteria from the South Pacific and the assessment of Streptomyces chemical diversity with metabolic profilingMar Drugs.1528610.3390/md15090286561842528892017Search in Google Scholar

Dalisay DS, Williams DE, Wang XL, Centko R, Chen J, Raymond J. 2013. Marine sediment-derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural products. PlosOne. 8:1–14.DalisayDSWilliamsDEWangXLCentkoRChenJRaymondJ.2013Marine sediment-derived Streptomyces bacteria from British Columbia, Canada are a promising microbiota resource for the discovery of antimicrobial natural productsPlosOne.811410.1371/journal.pone.0077078379495924130838Search in Google Scholar

Locatelli Fabricio M. K-SG and DU. 2016. Effects of trace metal ions on secondary metabolism and morphological development of streptomycetes. Metallomics. 8:469–480.LocatelliFabricio M.K-SG and DU2016Effects of trace metal ions on secondary metabolism and morphological development of streptomycetesMetallomics.846948010.1039/C5MT00324E27110673Search in Google Scholar

Goodfellow M, Busarakam K, Idris H, Labeda DP, Nouioui I, Brown R, Kim B-Y, del Carmen Montero-Calasanz M, Andrews BA, Bull AT. 2017. Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958. Antonie Van Leeuwenhoek. 110:1133–1148.GoodfellowMBusarakamKIdrisHLabedaDPNouiouiIBrownRKimB-Ydel Carmen Montero-CalasanzMAndrewsBABullAT.2017Streptomyces asenjonii sp. nov., isolated from hyper-arid Atacama Desert soils and emended description of Streptomyces viridosporus Pridham et al. 1958Antonie Van Leeuwenhoek.1101133114810.1007/s10482-017-0886-7555956128589342Search in Google Scholar

Guo X, Liu N, Li X, Ding Y, Shang F, Gao Y, Ruan J, Huang Y. 2015. Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolites. Löffler FE, editor. Appl Environ Microbiol. 81(9):3086–3103.GuoXLiuNLiXDingYShangFGaoYRuanJHuangY.2015Red soils harbor diverse culturable actinomycetes that are promising sources of novel secondary metabolitesLöfflerFE, editor.Appl Environ Microbiol.81(9):3086310310.1128/AEM.03859-14439344025724963Search in Google Scholar

Hashizume H, Sawa R, Yamashita K, Nishimura Y, Igarashi M. 2017. Structure and antibacterial activities of new cyclic peptide antibiotics, pargamicins B, C and D, from Amycolatopsis sp. ML1-hF4. J Antibiot (Tokyo). 70:699–704.HashizumeHSawaRYamashitaKNishimuraYIgarashiM.2017Structure and antibacterial activities of new cyclic peptide antibiotics, pargamicins B, C and D, from Amycolatopsis sp. ML1-hF4J Antibiot (Tokyo).7069970410.1038/ja.2017.3428293037Search in Google Scholar

Hassan HM, Degen D, Jang KH, Ebright RH, Fenical W. 2015. Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces sp. J Antibiot (Tokyo). 68:206–209.HassanHMDegenDJangKHEbrightRHFenicalW.2015Salinamide F, new depsipeptide antibiotic and inhibitor of bacterial RNA polymerase from a marine-derived Streptomyces spJ Antibiot (Tokyo).6820620910.1038/ja.2014.122436329825227504Search in Google Scholar

Hensler ME, Jang KH, Thienphrapa W, Vuong L, Tran DN, Soubih E, Lin L, Haste NM, Cunningham ML, Kwan BP, et al. 2014. Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureus. J Antibiot (Tokyo). 67:549–553.HenslerMEJangKHThienphrapaWVuongLTranDNSoubihELinLHasteNMCunninghamMLKwanBP2014Anthracimycin activity against contemporary methicillin-resistant Staphylococcus aureusJ Antibiot (Tokyo).6754955310.1038/ja.2014.36414667824736856Search in Google Scholar

Hou J, Liu P, Qu H, Fu P, Wang Y, Wang Z, Li Y, Teng X, Zhu W. 2012. Gilvocarcin HE: a new polyketide glycoside from Streptomyces sp. J Antibiot (Tokyo). 65:523–526.HouJLiuPQuHFuPWangYWangZLiYTengXZhuW.2012Gilvocarcin HE: a new polyketide glycoside from Streptomyces spJ Antibiot (Tokyo).6552352610.1038/ja.2012.6122854339Search in Google Scholar

Idris H, Nouioui I, Asenjo JA, Bull AT, Goodfellow M. 2017. Lentzea chajnantorensis sp. nov., an actinobacterium from a very high altitude Cerro Chajnantor gravel soil in northern Chile. Antonie Van Leeuwenhoek. 110:795–802.IdrisHNouiouiIAsenjoJABullATGoodfellowM.2017Lentzea chajnantorensis sp. nov., an actinobacterium from a very high altitude Cerro Chajnantor gravel soil in northern ChileAntonie Van Leeuwenhoek.11079580210.1007/s10482-017-0851-528324230Search in Google Scholar

Igarashi Y, Iida T, Oku N, Watanabe H, Furihata K, Miyanouchi K. 2012. Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus Actinomadura. J Antibiot (Tokyo). 65:355–359.IgarashiYIidaTOkuNWatanabeHFurihataKMiyanouchiK.2012Nomimicin, a new spirotetronate-class polyketide from an actinomycete of the genus ActinomaduraJ Antibiot (Tokyo).6535535910.1038/ja.2012.3022534651Search in Google Scholar

Igarashi Y, Ogura H, Furihata K, Oku N, Indananda C, Thamchaipenet A. 2011. Maklamicin, an antibacterial polyketide from an endophytic Micromonospora sp. J Nat Prod. 74(4):670–674.IgarashiYOguraHFurihataKOkuNIndanandaCThamchaipenetA.2011Maklamicin, an antibacterial polyketide from an endophytic Micromonospora spJ Nat Prod.74(4):67067410.1021/np100727h21388191Search in Google Scholar

Igarashi M, Sawa R, Yamasaki M, Hayashi C, Umekita M, Hatano M, Fujiwara T, Mizumoto K, Nomoto A. 2017. Kribellosides, novel RNA 5’-triphosphatase inhibitors from the rare actinomycete Kribbella sp. MI481-42F6. J Antibiot (Tokyo). 70:582–589.IgarashiMSawaRYamasakiMHayashiCUmekitaMHatanoMFujiwaraTMizumotoKNomotoA.2017Kribellosides, novel RNA 5’-triphosphatase inhibitors from the rare actinomycete Kribbella sp. MI481-42F6J Antibiot (Tokyo).7058258910.1038/ja.2016.16128074052Search in Google Scholar

Jang KH, Nam S-J, Locke JB, Kauffman CA, Beatty DS, Paul LA, Fenical W. 2013. Anthracimycin, a potent anthrax antibiotic from a marine-derived Actinomycete. Angew Chemie Int Ed. 52: 7822–7824.JangKHNamS-JLockeJBKauffmanCABeattyDSPaulLAFenicalW.2013Anthracimycin, a potent anthrax antibiotic from a marine-derived ActinomyceteAngew Chemie Int Ed.527822782410.1002/anie.201302749382170023776159Search in Google Scholar

Jiang Z, Guo L, Chen C, Liu S, Zhang L, Dai S, He Q, You X, Hu X, Tuo L, et al. 2015. Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst cave. J Antibiot (Tokyo). 68:771–774.JiangZGuoLChenCLiuSZhangLDaiSHeQYouXHuXTuoL2015Xiakemycin A, a novel pyranonaphthoquinone antibiotic, produced by the Streptomyces sp. CC8-201 from the soil of a karst caveJ Antibiot (Tokyo).6877177410.1038/ja.2015.7026104142Search in Google Scholar

Kang H, Brady SF. 2014. Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case study. J Am Chem Soc. 136(52):18111–18119.KangHBradySF.2014Mining soil metagenomes to better understand the evolution of natural product structural diversity: pentangular polyphenols as a case studyJ Am Chem Soc.136(52):181111811910.1021/ja510606j429176025521786Search in Google Scholar

Khalil ZG, Salim AA, Vuong D, Crombie A, Lacey E, Blumenthal A, Capon RJ. 2017. Amycolatopsins A-C: antimycobacterial glycosylated polyketide macrolides from the Australian soil Amycolatopsis sp. MST-108494. J Antibiot (Tokyo). 70:1097–1103.KhalilZGSalimAAVuongDCrombieALaceyEBlumenthalACaponRJ.2017Amycolatopsins A-C: antimycobacterial glycosylated polyketide macrolides from the Australian soil Amycolatopsis sp. MST-108494J Antibiot (Tokyo).701097110310.1038/ja.2017.11929066791Search in Google Scholar

Kim S-H, Ha T-K-Q, Oh WK, Shin J, Oh D-C. 2016. Antiviral indolosesquiterpenoid xiamycins c-e from a halophilic actinomycete. J Nat Prod. 79:51–58.KimS-HHaT-K-QOhWKShinJOhD-C.2016Antiviral indolosesquiterpenoid xiamycins c-e from a halophilic actinomyceteJ Nat Prod.79515810.1021/acs.jnatprod.5b0063426698879Search in Google Scholar

Komaki H, Ichikawa N, Oguchi A, Hamada M, Tamura T. 2015. Genome-based analysis of non-ribosomal peptide synthetase and type-I polyketide synthase gene clusters in all type strains of the genus Herbidospora. BMC Res Notes. 8:548.KomakiHIchikawaNOguchiAHamadaMTamuraT.2015Genome-based analysis of non-ribosomal peptide synthetase and type-I polyketide synthase gene clusters in all type strains of the genus HerbidosporaBMC Res Notes.854810.1186/s13104-015-1526-9459943726452464Search in Google Scholar

Lacret R, Oves-Costales D, Gómez C, Díaz C, de la Cruz M, Pérez-Victoria I, Vicente F, Genilloud O, Reyes F. 2014. New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensis. Mar Drugs. 13:128–140.LacretROves-CostalesDGómezCDíazCde la CruzMPérez-VictoriaIVicenteFGenilloudOReyesF.2014New ikarugamycin derivatives with antifungal and antibacterial properties from Streptomyces zhaozhouensisMar Drugs.1312814010.3390/md13010128430692825551780Search in Google Scholar

Latha S, Sivaranjani G, Dhanasekaran D. 2017. Response surface methodology : A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolites. Crit Rev Microbiol. 43(5):567–582.LathaSSivaranjaniGDhanasekaranD.2017Response surface methodology : A non-conventional statistical tool to maximize the throughput of Streptomyces species biomass and their bioactive metabolitesCrit Rev Microbiol.43(5):56758210.1080/1040841X.2016.127130828129718Search in Google Scholar

Lee L-H, Cheah Y-K, Mohd Sidik S, Ab Mutalib N-S, Tang Y-L, Lin H-P, Hong K. 2012. Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World J Microbiol Biotechnol. 28:2125–2137.LeeL-HCheahY-KMohd SidikSAb MutalibN-STangY-LLinH-PHongK.2012Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite productionWorld J Microbiol Biotechnol.282125213710.1007/s11274-012-1018-122806035Search in Google Scholar

Li S, Tian X, Niu S, Zhang W, Chen Y, Zhang H, Yang X, Zhang W, Li W, Zhang S, et al. 2011. Pseudonocardians A-C, new diazaanthraquinone derivatives from a deap-sea actinomycete Pseudonocardia sp. SCSIO 01299. Mar Drugs. 9:1428–1439.LiSTianXNiuSZhangWChenYZhangHYangXZhangWLiWZhangS2011Pseudonocardians A-C, new diazaanthraquinone derivatives from a deap-sea actinomycete Pseudonocardia sp. SCSIO 01299Mar Drugs.91428143910.3390/md9081428316438421892356Search in Google Scholar

Lin Z, Koch M, Pond CD, Mabeza G, Seronay RA, Concepcion GP, Barrows LR, Olivera BM, Schmidt EW. 2014. Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces sp. J Antibiot (Tokyo). 67:121–126.LinZKochMPondCDMabezaGSeronayRAConcepcionGPBarrowsLROliveraBMSchmidtEW.2014Structure and activity of lobophorins from a turrid mollusk-associated Streptomyces spJ Antibiot (Tokyo).6712112610.1038/ja.2013.115447057124220110Search in Google Scholar

Liu L-L, Xu Y, Han Z, Li Y-X, Lu L, Lai P-Y, Zhong J-L, Guo X-R, Zhang X-X, Qian P-Y. 2012. Four new antibacterial xanthones from the marine-derived actinomycetes Streptomyces caelestis. Mar Drugs. 10:2571–2583.LiuL-LXuYHanZLiY-XLuLLaiP-YZhongJ-LGuoX-RZhangX-XQianP-Y.2012Four new antibacterial xanthones from the marine-derived actinomycetes Streptomyces caelestisMar Drugs.102571258310.3390/md10112571350953623203278Search in Google Scholar

Liu X, Gan M, Dong B, Zhang T, Li Y, Zhang Y, Fan X, Wu Y, Bai S, Chen M, et al. 2012. 4862F, a new inhibitor of HIV-1 protease, from the culture of Streptomyces I03A-04862. Molecules. 18:236–243.LiuXGanMDongBZhangTLiYZhangYFanXWuYBaiSChenM20124862F, a new inhibitor of HIV-1 protease, from the culture of Streptomyces I03A-04862Molecules.1823624310.3390/molecules18010236626979023271463Search in Google Scholar

Lu C, Liao G, Zhang J, Tan H. 2015. Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenes. Microb Cell Fact. 14:173.LuCLiaoGZhangJTanH.2015Identification of novel tylosin analogues generated by a wblA disruption mutant of Streptomyces ansochromogenesMicrob Cell Fact.1417310.1186/s12934-015-0359-5463096626525981Search in Google Scholar

Lü Y, Shao M, Wang Y, Qian S, Wang M, Wang Y, Li X, Bao Y, Deng C, Yue C, et al. 2017. Zunyimycins B and C, new chloroanthrabenzoxocinones antibiotics against Methicillin-Resistant Staphylococcus aureus and Enterococci from Streptomyces sp. FJS31-2. Molecules. 22:251.YShaoMWangYQianSWangMWangYLiXBaoYDengCYueC2017Zunyimycins B and C, new chloroanthrabenzoxocinones antibiotics against Methicillin-Resistant Staphylococcus aureus and Enterococci from Streptomyces sp. FJS31-2Molecules.2225110.3390/molecules22020251615570428208722Search in Google Scholar

Mahajan G, Thomas B, Parab R, Patel ZE, Kuldharan S, Yemparala V, Mishra PD, Ranadive P, D’Souza L, Pari K, Sivaram krishnan H. 2013. In vitro and in vivo activities of antibiotic PM181104. Antimicrob Agents Chemother. 57:5315–5319.MahajanGThomasBParabRPatelZEKuldharanSYemparalaVMishraPDRanadivePD’SouzaLPariKSivaram krishnanH.2013In vitro and in vivo activities of antibiotic PM181104Antimicrob Agents Chemother.575315531910.1128/AAC.01059-13381127223939903Search in Google Scholar

Manivasagan P, Venkatesan J, Sivakumar K, Kim S. 2013. Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiol Res. 169(4):262–78.ManivasaganPVenkatesanJSivakumarKKimS.2013Pharmaceutically active secondary metabolites of marine actinobacteriaMicrobiol Res.169(4):26278Search in Google Scholar

Maxwell A, Lawson D. 2003. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr Top Med Chem. 3:283–303.MaxwellALawsonD.2003The ATP-binding site of type II topoisomerases as a target for antibacterial drugsCurr Top Med Chem.328330310.2174/156802603345250012570764Search in Google Scholar

Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. 2011. antiS-MASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 39:W339–W346.MedemaMHBlinKCimermancicPde JagerVZakrzewskiPFischbachMAWeberTTakanoEBreitlingR.2011antiS-MASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequencesNucleic Acids Res.39W339W34610.1093/nar/gkr466312580421672958Search in Google Scholar

Medema MH, Fischbach MA. 2015. Computational approaches to natural product discovery. Nat Chem Biol. 11:639–648.MedemaMHFischbachMA.2015Computational approaches to natural product discoveryNat Chem Biol.1163964810.1038/nchembio.1884502473726284671Search in Google Scholar

Mondol M, Shin H. 2014. Antibacterial and antiyeast compounds from marine-derived bacteria. Mar Drugs. 12:2913–2921.MondolMShinH.2014Antibacterial and antiyeast compounds from marine-derived bacteriaMar Drugs.122913292110.3390/md12052913405232324828294Search in Google Scholar

Moon K, Chung B, Shin Y, Rheingold AL, Moore CE, Park SJ, Park S, Lee SK, Oh K, Shin J. 2014. Pentacyclic antibiotics from a tidal mud flat-derived actinomycete. J Nat Prod. 78(3):524–529.MoonKChungBShinYRheingoldALMooreCEParkSJParkSLeeSKOhKShinJ.2014Pentacyclic antibiotics from a tidal mud flat-derived actinomyceteJ Nat Prod.78(3):52452910.1021/np500736b25495422Search in Google Scholar

Newman DJ, Cragg GM. 2016. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 79:629–661.NewmanDJCraggGM.2016Natural products as sources of new drugs from 1981 to 2014J Nat Prod.7962966110.1021/acs.jnatprod.5b0105526852623Search in Google Scholar

Niu S, Li S, Chen Y, Tian X, Zhang H, Zhang G, Zhang W, Yang X, Zhang S, Ju J, Zhang C. 2011. Lobophorins E and F, new spirotetronate antibiotics from a South China Sea-derived Streptomyces sp. SCSIO 01127. J Antibiot (Tokyo). 64:711–716.NiuSLiSChenYTianXZhangHZhangGZhangWYangXZhangSJuJZhangC.2011Lobophorins E and F, new spirotetronate antibiotics from a South China Sea-derived Streptomyces sp. SCSIO 01127J Antibiot (Tokyo).6471171610.1038/ja.2011.7821897400Search in Google Scholar

O’Neill J. 2016. Tackling drug-resistant infections globally: final report and recommandations [Internet]. London (UK): The review on antimicrobial resistance; [cited 2018 May 8]. Available from https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdf.O’NeillJ.2016Tackling drug-resistant infections globally: final report and recommandations [Internet]London (UK)The review on antimicrobial resistance; [cited 2018 May 8]. Available from https://amr-review.org/sites/default/files/160525_Final%20paper_with%20cover.pdfSearch in Google Scholar

Oh D, Poulsen M, Currie CR, Clardy J. 2011. Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated. Org Lett. 13:15–18.OhDPoulsenMCurrieCRClardyJ.2011Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associatedOrg Lett.13151810.1021/ol102991d303773821247188Search in Google Scholar

Onaka H. 2017. Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetes. J Antibiot (Tokyo). 70(8):865–870.OnakaH.2017Novel antibiotic screening methods to awaken silent or cryptic secondary metabolic pathways in actinomycetesJ Antibiot (Tokyo).70(8):86587010.1038/ja.2017.5128442735Search in Google Scholar

Pan H-Q, Zhang S-Y, Wang N, Li Z-L, Hua H-M, Hu J-C, Wang S-J. 2013. New spirotetronate antibiotics, Lobophorins H and I, from a South China sea-derived Streptomyces sp. 12A35. Mar Drugs. 11:3891–3901.PanH-QZhangS-YWangNLiZ-LHuaH-MHuJ-CWangS-J.2013New spirotetronate antibiotics, Lobophorins H and I, from a South China sea-derived Streptomyces sp. 12A35Mar Drugs.113891390110.3390/md11103891382614124132178Search in Google Scholar

Pascoalino BS, Courtemanche G, Cordeiro MT, Gil LHVG, Freitas-Junior L. 2016. Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved library. F1000Research. 5:2523.PascoalinoBSCourtemancheGCordeiroMTGilLHVGFreitas-JuniorL.2016Zika antiviral chemotherapy: identification of drugs and promising starting points for drug discovery from an FDA-approved libraryF1000Research.5252310.12688/f1000research.9648.1511257827909576Search in Google Scholar

Paulus C, Rebets Y, Tokovenko B, Nadmid S, Terekhova LP, Myronovskyi M, Zotchev SB, Rückert C, Braig S, Zahler S, et al. 2017. New natural products identified by combined genomicsmetabolomics profiling of marine Streptomyces sp. MP131–18. Sci Rep. 7:42382.PaulusCRebetsYTokovenkoBNadmidSTerekhovaLPMyronovskyiMZotchevSBRückertCBraigSZahlerS2017New natural products identified by combined genomicsmetabolomics profiling of marine Streptomyces sp. MP131–18Sci Rep.74238210.1038/srep42382530119628186197Search in Google Scholar

Phillips JW, Goetz MA, Smith SK, Zink DL, Polishook J, Onishi R, Salowe S, Wiltsie J, Allocco J, Sigmund J, et al. 2011. Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureus. Chem Biol. 18:955–965.PhillipsJWGoetzMASmithSKZinkDLPolishookJOnishiRSaloweSWiltsieJAlloccoJSigmundJ2011Discovery of kibdelomycin, a potent new class of bacterial type II topoisomerase inhibitor by chemical-genetic profiling in Staphylococcus aureusChem Biol.1895596510.1016/j.chembiol.2011.06.01121867911Search in Google Scholar

Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF, Wilkinson KA, Wilkinson B, Hutchings MI. 2017. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci. 8:3218–3227.QinZMunnochJTDevineRHolmesNASeipkeRFWilkinsonKAWilkinsonBHutchingsMI.2017Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-antsChem Sci.83218322710.1039/C6SC04265ASearch in Google Scholar

Rajnisz A, Guśpiel A, Postek M, Ziemska J, Laskowska A, Rabczenko D, Solecka J. 2016. Characterization and optimization of biosynthesis of bioactive secondary metabolites produced by Streptomyces sp. 8812. Pol J Microbiol. 65:51–61.RajniszAGuśpielAPostekMZiemskaJLaskowskaARabczenkoDSoleckaJ.2016Characterization and optimization of biosynthesis of bioactive secondary metabolites produced by Streptomyces sp. 8812Pol J Microbiol.65516110.5604/17331331.119727527281994Search in Google Scholar

Rao M, Wei W, Ge M, Chen D, Sheng X. 2013. A new antibacterial lipopeptide found by UPLC-MS from an actinomycete Streptomyces sp. HCCB10043. Nat Prod Res. 27:2190–2195.RaoMWeiWGeMChenDShengX.2013A new antibacterial lipopeptide found by UPLC-MS from an actinomycete Streptomyces sp. HCCB10043Nat Prod Res.272190219510.1080/14786419.2013.81166123815473Search in Google Scholar

Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H, Harrison WTA, Okoro CK, Asenjo JA, Andrews BA, Ferguson G, et al. 2011a. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J Nat Prod. 74(6):1491–1499.RatebMEHoussenWEArnoldMAbdelrahmanMHDengHHarrisonWTAOkoroCKAsenjoJAAndrewsBAFergusonG2011aChaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces spJ Nat Prod.74(6):1491149910.1021/np200320u21553813Search in Google Scholar

Rateb ME, Houssen WE, Harrison WTA, Deng H, Okoro CK, Asenjo JA, Andrews BA, Bull AT, Goodfellow M, Ebel R, Jaspars M. 2011b. Diverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environment. J Nat Prod. 74(9):1965–1971.RatebMEHoussenWEHarrisonWTADengHOkoroCKAsenjoJAAndrewsBABullATGoodfellowMEbelRJasparsM.2011bDiverse metabolic profiles of a Streptomyces strain isolated from a hyper-arid environmentJ Nat Prod.74(9):1965197110.1021/np200470u21879726Search in Google Scholar

Rathod BB, Korasapati R, Sripadi P, Reddy Shetty P. 2018. Novel actinomycin group compound from newly isolated Streptomyces sp. RAB12: isolation, characterization, and evaluation of antimicrobial potential. Appl Microbiol Biotechnol. 102:1241–1250.RathodBBKorasapatiRSripadiPReddy ShettyP.2018Novel actinomycin group compound from newly isolated Streptomyces sp. RAB12: isolation, characterization, and evaluation of antimicrobial potentialAppl Microbiol Biotechnol.1021241125010.1007/s00253-017-8696-429270734Search in Google Scholar

Rathore SS, Ramamurthy V, Allen S, Selva Ganesan S, Ramakrishnan J. 2016. Novel approach of adaptive laboratory evolution: triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Adv. 6:96250–96262.RathoreSSRamamurthyVAllenSSelva GanesanSRamakrishnanJ.2016Novel approach of adaptive laboratory evolution: triggers defense molecules in Streptomyces sp. against targeted pathogenRSC Adv.6962509626210.1039/C6RA15952DSearch in Google Scholar

Rausch K, Hackett BA, Weinbren NL, Reeder SM, Sadovsky Y, Hunter CA, Schultz DC, Coyne CB, Cherry S. 2017. Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virus. Cell Rep. 18:804–815.RauschKHackettBAWeinbrenNLReederSMSadovskyYHunterCASchultzDCCoyneCBCherryS.2017Screening bioactives reveals nanchangmycin as a broad spectrum antiviral active against Zika virusCell Rep.1880481510.1016/j.celrep.2016.12.068527037628099856Search in Google Scholar

Raveh A, Delekta PC, Dobry CJ, Peng W, Schultz PJ, Blakely PK, Tai AW, Matainaho T, Irani DN, Sherman DH, Miller DJ. 2013. Discovery of potent broad spectrum antivirals derived from marine actinobacteria. Ianora A, editor. PLoS One. 8:e82318.RavehADelektaPCDobryCJPengWSchultzPJBlakelyPKTaiAWMatainahoTIraniDNShermanDHMillerDJ.2013Discovery of potent broad spectrum antivirals derived from marine actinobacteriaIanoraA, editor.PLoS One.8e82318Search in Google Scholar

Riquelme C, Dapkevicius MDE, Miller AZ, Charlop-Powers Z, Brady S, Mason C, Cheeptham N. 2016. Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves. Appl Microbiol Biotechnol. 101(2):843–857.RiquelmeCDapkeviciusMDEMillerAZCharlop-PowersZBradySMasonCCheepthamN.2016Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic cavesAppl Microbiol Biotechnol.101(2):843857Search in Google Scholar

Saiz J-C, Martín-Acebes MA. 2017. The race to find antivirals for Zika virus. Antimicrob Agents Chemother. 61:e00411–17.SaizJ-CMartín-AcebesMA.2017The race to find antivirals for Zika virusAntimicrob Agents Chemother.61e004111710.1128/AAC.00411-17544418628348160Search in Google Scholar

Sato S, Iwata F, Yamada S, Katayama M. 2012. Neomaclafungins A-I: Oligomycin-class macrolides from a marine-derived Actinomycete. J Nat Prod. 75:1974–1982.SatoSIwataFYamadaSKatayamaM.2012Neomaclafungins A-I: Oligomycin-class macrolides from a marine-derived ActinomyceteJ Nat Prod.751974198210.1021/np300719g23102410Search in Google Scholar

Sawa R, Kubota Y, Umekita M, Hatano M, Hayashi C, Igarashi M. 2018. Quadoctomycin, a 48-membered macrolide antibiotic from Streptomyces sp. MM168-141F8. J Antibiot (Tokyo). 71:91–96.SawaRKubotaYUmekitaMHatanoMHayashiCIgarashiM.2018Quadoctomycin, a 48-membered macrolide antibiotic from Streptomyces sp. MM168-141F8J Antibiot (Tokyo).71919610.1038/ja.2017.14029138481Search in Google Scholar

Shin B, Kim B, Cho E, Oh K, Shin J, Goodfellow M. 2016. Actinomadurol, an antibacterial norditerpenoid from a rare actinomycete, Actinomadura sp. KC 191. J Nat Prod. 79(7):1886–1890.ShinBKimBChoEOhKShinJGoodfellowM.2016Actinomadurol, an antibacterial norditerpenoid from a rare actinomycete, Actinomadura sp. KC 191J Nat Prod.79(7):1886189010.1021/acs.jnatprod.6b0026827367579Search in Google Scholar

Singh B, Gupta V, Passari A. 2018. New and future developments in microbial biotechnology and bioengineering. Actinobacteria: diversity and biotechnological applications. Amsterdam, Oxford, Cambridge: Elsevier.SinghBGuptaVPassariA.2018New and future developments in microbial biotechnology and bioengineering. Actinobacteria: diversity and biotechnological applicationsAmsterdam, Oxford, CambridgeElsevierSearch in Google Scholar

Singh SB, Dayananth P, Balibar CJ, Garlisi CG, Lu J, Kishii R, Takei M, Fukuda Y, Ha S, Young K. 2015. Kibdelomycin is a bactericidal broad-spectrum aerobic antibacterial agent. Antimicrob Agents Chemother. 59:3474–3481.SinghSBDayananthPBalibarCJGarlisiCGLuJKishiiRTakeiMFukudaYHaSYoungK.2015Kibdelomycin is a bactericidal broad-spectrum aerobic antibacterial agentAntimicrob Agents Chemother.593474348110.1128/AAC.00382-15443211625845866Search in Google Scholar

Solecka J, Zajko J, Postek M, Rajnisz A. 2012. Biologically active secondary metabolites from Actinomycetes. Cent Eur J Biol. 7:373–390.SoleckaJZajkoJPostekMRajniszA.2012Biologically active secondary metabolites from ActinomycetesCent Eur J Biol.737339010.2478/s11535-012-0036-1Search in Google Scholar

Solecka J, Ziemska J, Rajnisz A, Laskowska A, Guśpiel A. 2013. Promieniowce – Występowanie i wytwarzanie związków biologicznie czynnych. Postep Mikrobiol. 52:83–91.SoleckaJZiemskaJRajniszALaskowskaAGuśpielA.2013Promieniowce – Występowanie i wytwarzanie związków biologicznie czynnychPostep Mikrobiol.528391Search in Google Scholar

Song Y, Huang H, Chen Y, Ding J, Zhang Y, Sun A, Zhang W, Ju J. 2013. Cytotoxic and Antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406. J Nat Prod. 76(12):2263–2268.SongYHuangHChenYDingJZhangYSunAZhangWJuJ.2013Cytotoxic and Antibacterial marfuraquinocins from the deep South China Sea-derived Streptomyces niveus SCSIO 3406J Nat Prod.76(12):2263226810.1021/np400602524251399Search in Google Scholar

Sun P, Maloney KN, Nam S-J, Haste NM, Raju R, Aalbersberg W, Jensen PR, Nizet V, Hensler ME, Fenical W. 2011. Fijimycins A-C, three antibacterial etamycin-class depsipeptides from a marine-derived Streptomyces sp. Bioorg Med Chem. 19:6557–6562.SunPMaloneyKNNamS-JHasteNMRajuRAalbersbergWJensenPRNizetVHenslerMEFenicalW.2011Fijimycins A-C, three antibacterial etamycin-class depsipeptides from a marine-derived Streptomyces spBioorg Med Chem.196557656210.1016/j.bmc.2011.06.053320519121745747Search in Google Scholar

Thong WL, Shin-ya K, Nishiyama M, Kuzuyama T. 2015. Methylbenzene-containing polyketides from a Streptomyces that spontaneously acquired rifampicin resistance: structural elucidation and biosynthesis. J Nat Prod. 79(4):857–864.ThongWLShin-yaKNishiyamaMKuzuyamaT.2015Methylbenzene-containing polyketides from a Streptomyces that spontaneously acquired rifampicin resistance: structural elucidation and biosynthesisJ Nat Prod.79(4):85786410.1021/acs.jnatprod.5b0092226905826Search in Google Scholar

Um S, Choi TJ, Kim H, Kim BY, Kim S, Lee SK, Oh K, Shin J, Oh D. 2013. Ohmyungsamycins A and B: cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a Volcanic Island. J Org Chem. 78(24):12321–12329.UmSChoiTJKimHKimBYKimSLeeSKOhKShinJOhD.2013Ohmyungsamycins A and B: cytotoxic and antimicrobial cyclic peptides produced by Streptomyces sp. from a Volcanic IslandJ Org Chem.78(24):123211232910.1021/jo401974g24266328Search in Google Scholar

WHO. 2014. Antimicrobial resistance: global report on surveillance [Internet]. Geneva (Switzerland): World Health Organization; [cited 2018 May 8]. Available from http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1WHO.2014Antimicrobial resistance: global report on surveillance [Internet]Geneva (Switzerland)World Health Organization; [cited 2018 May 8]. Available from http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdf?ua=1Search in Google Scholar

WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics [Internet]. Geneva (Switzerland): World Health Organization; [cited 2018 May 8]. Available from http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1WHO.2017Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics [Internet]Geneva (Switzerland)World Health Organization; [cited 2018 May 8]. Available from http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1Search in Google Scholar

Wink J, Mohammadipanah F, Hamedi J, editors. 2017. Biology and Biotechnology of Actinobacteria. Cham (Switzerland): Springer Nature.WinkJMohammadipanahFHamediJ, editors.2017Biology and Biotechnology of ActinobacteriaCham (Switzerland)Springer Nature10.1007/978-3-319-60339-1Search in Google Scholar

Wu Z, Li S, Li J, Chen Y, Saurav K, Zhang Q, Zhang H, Zhang W, Zhang W, Zhang S, Zhang C. 2013. Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428. Mar Drugs. 11:2113–2125.WuZLiSLiJChenYSauravKZhangQZhangHZhangWZhangWZhangSZhangC.2013Antibacterial and cytotoxic new napyradiomycins from the marine-derived Streptomyces sp. SCSIO 10428Mar Drugs.112113212510.3390/md11062113372122323771045Search in Google Scholar

Xin W, Ye X, Yu S, Lian X-Y, Zhang Z. 2012. New capoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025. Mar Drugs. 10:2388–2402.XinWYeXYuSLianX-YZhangZ.2012New capoamycin-type antibiotics and polyene acids from marine Streptomyces fradiae PTZ0025Mar Drugs.102388240210.3390/md10112388350952423203266Search in Google Scholar

Xu J, Gu K, Zhang D-J, Li Y-G, Tian L. 2017. Ghanamycins A and B, two novel γ-butyrolactones from marine-derived Streptomyces ghanaensis TXC6-16. J Antibiot (Tokyo). 70:733–736.XuJGuKZhangD-JLiY-GTianL.2017Ghanamycins A and B, two novel γ-butyrolactones from marine-derived Streptomyces ghanaensis TXC6-16J Antibiot (Tokyo).7073373610.1038/ja.2017.3728293035Search in Google Scholar

Yang J, Yang Z, Yin Y, Rao M, Liang Y, Ge M. 2016. Three novel polyene macrolides isolated from cultures of Streptomyces lavenduligriseus. J Antibiot (Tokyo). 69:62–65.YangJYangZYinYRaoMLiangYGeM.2016Three novel polyene macrolides isolated from cultures of Streptomyces lavenduligriseusJ Antibiot (Tokyo).69626510.1038/ja.2015.7626174177Search in Google Scholar

Yu L, Trujillo ME, Miyanaga S, Saiki I, Igarashi Y. 2014. Campechic acids A and B: anti-invasive polyether polyketides from a soil-derived Streptomyces. J Nat Prod. 77(4):976–982.YuLTrujilloMEMiyanagaSSaikiIIgarashiY.2014Campechic acids A and B: anti-invasive polyether polyketides from a soil-derived StreptomycesJ Nat Prod.77(4):97698210.1021/np401071x24592993Search in Google Scholar

Zhang H, Wang H, Wang Y, Cui H, Xie Z, Pu Y, Pei S, Li F, Qin S. 2012. Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007. FEMS Microbiol Lett. 332(2):105–112.ZhangHWangHWangYCuiHXieZPuYPeiSLiFQinS.2012Genomic sequence-based discovery of novel angucyclinone antibiotics from marine Streptomyces sp. W007FEMS Microbiol Lett.332(2):10511210.1111/j.1574-6968.2012.02582.x22536997Search in Google Scholar

Ziemska J, Rajnisz A, Solecka J. 2013. New perspectives on antibacterial drug research. Cent Eur J Biol. 8:943–957.ZiemskaJRajniszASoleckaJ.2013New perspectives on antibacterial drug researchCent Eur J Biol.894395710.2478/s11535-013-0209-6Search in Google Scholar

Zotchev SB. 2012. Marine actinomycetes as an emerging resource for the drug development pipelines. J Biotechnol. 158:168–175.ZotchevSB.2012Marine actinomycetes as an emerging resource for the drug development pipelinesJ Biotechnol.15816817510.1016/j.jbiotec.2011.06.00221683100Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology