Cite

Rimon-Dahari N, Yerushalmi-Heinemann L, Alyagor L, Dekel N. Ovarian folliculogenesis. Results Probl Cell Differ. 2016;58:167–90; DOI:10.1007/978-3-319-31973-5_7.Rimon-DahariNYerushalmi-HeinemannLAlyagorLDekelNOvarian folliculogenesisResults Probl Cell Differ2016581679010.1007/978-3-319-31973-5_7Open DOISearch in Google Scholar

Yang DZ, Yang W, Li Y, He Z. Progress in understanding human ovarian folliculogenesis and its implications in assisted reproduction. J Assist Reprod Genet. 2013;30:213–19; DOI:10.1007/s10815-013-9944-x.YangDZYangWLiYHeZProgress in understanding human ovarian folliculogenesis and its implications in assisted reproductionJ Assist Reprod Genet2013302131910.1007/s10815-013-9944-xOpen DOISearch in Google Scholar

Franks S, Hardy K. Androgen action in the ovary. Front Endocrinol (Lausanne). 2018;9:452; DOI:10.3389/fendo.2018.00452.FranksSHardyKAndrogen action in the ovaryFront Endocrinol (Lausanne)2018945210.3389/fendo.2018.00452Open DOISearch in Google Scholar

Stamatiades GA, Carroll RS, Kaiser UB. GnRH - A Key Regulator of FSH. Endocrinology. 2019;160:57–67; DOI:10.1210/en.2018-00889.StamatiadesGACarrollRSKaiserUBGnRH - A Key Regulator of FSHEndocrinology2019160576710.1210/en.2018-00889Open DOISearch in Google Scholar

Kaprara A, Huhtaniemi IT. The hypothalamus-pituitary-gonad axis: Tales of mice and men. Metabolism. 2018;86:3–17; DOI:10.1016/j.metabol.2017.11.018.KapraraAHuhtaniemiITThe hypothalamus-pituitary-gonad axis: Tales of mice and menMetabolism20188631710.1016/j.metabol.2017.11.018Open DOISearch in Google Scholar

Miller WL, Shafiee-Kermani F, Strahl BD, Huang HJ. The nature of FSH induction by GnRH. Trends Endocrinol Metab. 2002;13:257–63; DOI:10.1016/S1043-2760(02)00614-8.MillerWLShafiee-KermaniFStrahlBDHuangHJThe nature of FSH induction by GnRHTrends Endocrinol Metab2002132576310.1016/S1043-2760(02)00614-8Open DOISearch in Google Scholar

Barbieri RL, McShane PM, Ryan KJ. Constituents of cigarette smoke inhibit human granulosa cell aromatase. Fertil Steril. 1986;46:232–6; DOI:10.1016/s0015-0282(16)49517-8.BarbieriRLMcShanePMRyanKJConstituents of cigarette smoke inhibit human granulosa cell aromataseFertil Steril198646232610.1016/s0015-0282(16)49517-8Open DOISearch in Google Scholar

Yang F, Ruan YC, Yang YJ, Wang K, Liang SS, Han Y Bin, Teng XM, Yang JZ. Follicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome women. Reproduction. 2015;150:289–96; DOI:10.1530/REP-15-0044.YangFRuanYCYangYJWangKLiangSSHanY BinTengXMYangJZFollicular hyperandrogenism downregulates aromatase in luteinized granulosa cells in polycystic ovary syndrome womenReproduction20151502899610.1530/REP-15-0044Open DOISearch in Google Scholar

Byskov AG, Yding Andersen C, Hossaini A, Guoliang X. Cumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSH. Mol Reprod Dev. 1997;46:296–305; DOI:10.1002/(SICI)1098-2795(199703)46:3<296::AID-MRD8>3.0.CO;2-K.ByskovAGYding AndersenCHossainiAGuoliangXCumulus cells of oocyte-cumulus complexes secrete a meiosis-activating substance when stimulated with FSHMol Reprod Dev19974629630510.1002/(SICI)1098-2795(199703)46:3<296::AID-MRD8>3.0.CO;2-KOpen DOISearch in Google Scholar

Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: Follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16; DOI:10.1016/j.fertnstert.2014.11.015.DumesicDAMeldrumDRKatz-JaffeMGKrisherRLSchoolcraftWBOocyte environment: Follicular fluid and cumulus cells are critical for oocyte healthFertil Steril20151033031610.1016/j.fertnstert.2014.11.015Open DOISearch in Google Scholar

Kidder GM, Mhawi AA. Gap junctions and ovarian folliculogenesis. Reproduction. 2002;123:613–20; DOI:10.1530/rep.0.1230613.KidderGMMhawiAAGap junctions and ovarian folliculogenesisReproduction20021236132010.1530/rep.0.1230613Open DOISearch in Google Scholar

Feng G, Shi D, Yang S, Wang X. Co-culture embedded in cumulus clumps promotes maturation of denuded oocytes and reconstructs gap junctions between oocytes and cumulus cells. Zygote. 2013;21:231–7; DOI:10.1017/S0967199412000305.FengGShiDYangSWangXCo-culture embedded in cumulus clumps promotes maturation of denuded oocytes and reconstructs gap junctions between oocytes and cumulus cellsZygote201321231710.1017/S0967199412000305Open DOISearch in Google Scholar

Zhou CJ, Wu SN, Shen JP, Wang DH, Kong XW, Lu A, Li YJ, Zhou HX, Zhao YF, Liang CG. The beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in mice. PeerJ. 2016;4:e1761; DOI:10.7717/peerj.1761.ZhouCJWuSNShenJPWangDHKongXWLuALiYJZhouHXZhaoYFLiangCGThe beneficial effects of cumulus cells and oocyte-cumulus cell gap junctions depends on oocyte maturation and fertilization methods in micePeerJ20164e176110.7717/peerj.1761Open DOISearch in Google Scholar

Santiquet NW, Develle Y, Laroche A, Robert C, Richard FJ. Regulation of gap-junctional communication between cumulus cells during in vitro: Maturation in swine, a gap-FRAP study. Biol Reprod. 2012;87:46; DOI:10.1095/biolreprod.112.099754.SantiquetNWDevelleYLarocheARobertCRichardFJRegulation of gap-junctional communication between cumulus cells during in vitro: Maturation in swine, a gap-FRAP studyBiol Reprod2012874610.1095/biolreprod.112.099754Open DOISearch in Google Scholar

Chermuła B, Kranc W, Jopek K, Budna-Tukan J, Hutchings G, Dompe C, Moncrieff L, Janowicz K, Józkowiak M, Jeseta M, Petitte J, Mozdziak P, Pawelczyk L, Spaczyński RZ, Kempisty B. Human Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular Markers. Cells. 2020;9:1265; DOI:10.3390/cells9051265.ChermułaBKrancWJopekKBudna-TukanJHutchingsGDompeCMoncrieffLJanowiczKJózkowiakMJesetaMPetitteJMozdziakPPawelczykLSpaczyńskiRZKempistyBHuman Cumulus Cells in Long-Term In Vitro Culture Reflect Differential Expression Profile of Genes Responsible for Planned Cell Death and Aging-A Study of New Molecular MarkersCells20209126510.3390/cells9051265Open DOISearch in Google Scholar

Hickman CFL, Campbell A, Fishel S. Optimising the timing between oocyte collection, cumulus removal and insemination by ICSI or IVF. Fertil Steril. 2011;96; DOI:10.1016/j.fertnstert.2011.07.305.HickmanCFLCampbellAFishelSOptimising the timing between oocyte collection, cumulus removal and insemination by ICSI or IVFFertil Steril20119610.1016/j.fertnstert.2011.07.305Open DOISearch in Google Scholar

Kong QQ, Wang J, Xiao B, Lin FH, Zhu J, Sun GY, Luo MJ, Tan JH. Cumulus cell-released tumor necrosis factor (TNF)-a promotes post-ovulatory aging of mouse oocytes. Aging (Albany NY). 2018;10:1745–57; DOI:10.18632/aging.101507.KongQQWangJXiaoBLinFHZhuJSunGYLuoMJTanJHCumulus cell-released tumor necrosis factor (TNF)-a promotes post-ovulatory aging of mouse oocytesAging (Albany NY)20181017455710.18632/aging.101507Open DOISearch in Google Scholar

Zhu J, Zhang J, Li H, Wang TY, Zhang CX, Luo MJ, Tan JH. Cumulus cells accelerate oocyte aging by releasing soluble Fas Ligand in mice. Sci Rep. 2015;5:8683; DOI:10.1038/srep08683.ZhuJZhangJLiHWangTYZhangCXLuoMJTanJHCumulus cells accelerate oocyte aging by releasing soluble Fas Ligand in miceSci Rep20155868310.1038/srep08683Open DOISearch in Google Scholar

Lee KS, Joo BS, Na YJ, Yoon MS, Choi OH, Kim WW. Cumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ET. J Assist Reprod Genet. 2001;18:490–8; DOI:10.1023/A:1016649026353.LeeKSJooBSNaYJYoonMSChoiOHKimWWCumulus cells apoptosis as an indicator to predict the quality of oocytes and the outcome of IVF-ETJ Assist Reprod Genet200118490810.1023/A:1016649026353Open DOISearch in Google Scholar

Hussein TS, Froiland DA, Amato F, Thompson JG, Gilchrist RB. Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci. 2005;118:5257–68; DOI:10.1242/jcs.02644.HusseinTSFroilandDAAmatoFThompsonJGGilchristRBOocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteinsJ Cell Sci200511852576810.1242/jcs.02644Open DOISearch in Google Scholar

Fridman JS, Lowe SW. Control of apoptosis by p53. Oncogene. 2003;22:9030–40; DOI:10.1038/sj.onc.1207116.FridmanJSLoweSWControl of apoptosis by p53Oncogene20032290304010.1038/sj.onc.1207116Open DOISearch in Google Scholar

Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stan-bridge E, Frisch S, Reed JC. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21; DOI:10.1126/science.282.5392.1318.CardoneMHRoyNStennickeHRSalvesenGSFrankeTFStan-bridgeEFrischSReedJCRegulation of cell death protease caspase-9 by phosphorylationScience199828213182110.1126/science.282.5392.1318Open DOISearch in Google Scholar

McArthur K, Whitehead LW, Heddleston JM, Li L, Padman BS, Oorschot V, Geoghegan ND, Chappaz S, Davidson S, Chin HS, Lane RM, Dramicanin M, Saunders TL, Sugiana C, Lessene R, Osellame LD, Chew TL, Dewson G, Lazarou M, Ramm G, Lessene G, Ryan MT, Rogers KL, Van Delft MF, Kile BT. BAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosis. Science. 2018;359:eaao6047; DOI:10.1126/science.aao6047.McArthurKWhiteheadLWHeddlestonJMLiLPadmanBSOorschotVGeogheganNDChappazSDavidsonSChinHSLaneRMDramicaninMSaundersTLSugianaCLesseneROsellameLDChewTLDewsonGLazarouMRammGLesseneGRyanMTRogersKLVan DelftMFKileBTBAK/BAX macropores facilitate mitochondrial herniation and mtDNA efflux during apoptosisScience2018359eaao604710.1126/science.aao6047Open DOISearch in Google Scholar

Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res. 2011;30:87; DOI:10.1186/1756-9966-30-87.WongRSYApoptosis in cancer: From pathogenesis to treatmentJ Exp Clin Cancer Res2011308710.1186/1756-9966-30-87Open DOISearch in Google Scholar

Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B. A model for p53-induced apoptosis. Nature. 1997;389;300–5; DOI:10.1038/38525.PolyakKXiaYZweierJLKinzlerKWVogelsteinBA model for p53-induced apoptosisNature1997389300510.1038/38525Open DOISearch in Google Scholar

Aubrey BJ, Kelly GL, Janic A, Herold MJ, Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018;25:104–113; DOI:10.1038/cdd.2017.169.AubreyBJKellyGLJanicAHeroldMJStrasserAHow does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression?Cell Death Differ20182510411310.1038/cdd.2017.169Open DOISearch in Google Scholar

Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987;162:156–9; DOI:10.1016/0003-2697(87)90021-2.ChomczynskiPSacchiNSingle-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extractionAnal Biochem1987162156910.1016/0003-2697(87)90021-2Open DOISearch in Google Scholar

Pflaum J, Schlosser S, Müller M. P53 family and cellular stress responses in cancer. Front Oncol. 2014;4:285; DOI:10.3389/fonc.2014.00285.PflaumJSchlosserSMüllerMP53 family and cellular stress responses in cancerFront Oncol2014428510.3389/fonc.2014.00285Open DOISearch in Google Scholar

Reich NC, Levine AJ. Growth regulation of a cellular tumour antigen, p53, in nontransformed cells. Nature. 1984;308:199–201; DOI:10.1038/308199a0.ReichNCLevineAJGrowth regulation of a cellular tumour antigen, p53, in nontransformed cellsNature198430819920110.1038/308199a0Open DOISearch in Google Scholar

Haupt Y, Maya R, Kazaz A, Oren M. Mdm2 promotes the rapid degradation of p53. Nature. 1997;387:296–9; DOI:10.1038/387296a0.HauptYMayaRKazazAOrenMMdm2 promotes the rapid degradation of p53Nature1997387296910.1038/387296a0Open DOISearch in Google Scholar

Shieh SY, Ikeda M, Taya Y, Prives C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997;91:325–34; DOI:10.1016/S0092-8674(00)80416-X.ShiehSYIkedaMTayaYPrivesCDNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2Cell1997913253410.1016/S0092-8674(00)80416-XOpen DOISearch in Google Scholar

Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta - Mol Cell Res. 2011;1813:521–31; DOI:10.1016/j.bbamcr.2010.12.019.WestphalDDewsonGCzabotarPEKluckRMMolecular biology of Bax and Bak activation and actionBiochim Biophys Acta - Mol Cell Res201118135213110.1016/j.bbamcr.2010.12.019Open DOISearch in Google Scholar

Leon PMM, Campos VF, Kaefer C, Begnini KR, Mcbride AJA, Dellagostin OA, Seixas FK, Deschamps JC, Collares T. Expression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cells. Zygote. 2013;21:279–85; DOI:10.1017/S0967199411000554.LeonPMMCamposVFKaeferCBegniniKRMcbrideAJADellagostinOASeixasFKDeschampsJCCollaresTExpression of apoptotic genes in immature and in vitro matured equine oocytes and cumulus cellsZygote2013212798510.1017/S0967199411000554Open DOISearch in Google Scholar

Filali M, Frydman N, Belot MP, Hesters L, Gaudin F, Tachdjian G, Emilie D, Frydman R, Machelon V. Oocyte in-vitro maturation: BCL2 mRNA content in cumulus cells reflects oocyte competency. Reprod Biomed Online. 2009;19 Suppl 4:4309; DOI:10.1016/s1472-6483(10)61071-1.FilaliMFrydmanNBelotMPHestersLGaudinFTachdjianGEmilieDFrydmanRMachelonVOocyte in-vitro maturation: BCL2 mRNA content in cumulus cells reflects oocyte competencyReprod Biomed Online200919Suppl 4430910.1016/s1472-6483(10)61071-1Open DOISearch in Google Scholar

Haraguchi H, Hirota Y, Saito-Fujita T, Tanaka T, Shimizu-Hirota R, Harada M, Akaeda S, Hiraoka T, Matsuo M, Matsumoto L, Hirata T, Koga K, Wada-Hiraike O, Fujii T, Osuga Y. Mdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte quality. FASEB J. 2019;33:2610–20; DOI:10.1096/fj.201801401R.HaraguchiHHirotaYSaito-FujitaTTanakaTShimizu-HirotaRHaradaMAkaedaSHiraokaTMatsuoMMatsumotoLHirataTKogaKWada-HiraikeOFujiiTOsugaYMdm2-p53-SF1 pathway in ovarian granulosa cells directs ovulation and fertilization by conditioning oocyte qualityFASEB J20193326102010.1096/fj.201801401ROpen DOISearch in Google Scholar

Scaruffi P, Stigliani S, Cardinali B, Massarotti C, Lambertini M, Sozzi F, Dellepiane C, Merlo DF, Anserini P, Del Mastro L. Gonadotropin releasing hormone agonists have an anti-apoptotic effect on cumulus cells. Int J Mol Sci. 2019;20:6045; DOI:10.3390/ijms20236045.ScaruffiPStiglianiSCardinaliBMassarottiCLambertiniMSozziFDellepianeCMerloDFAnseriniPDel MastroLGonadotropin releasing hormone agonists have an anti-apoptotic effect on cumulus cellsInt J Mol Sci201920604510.3390/ijms20236045Open DOISearch in Google Scholar

Arias-Álvarez M, Garciá-Garciá RM, López-Tello J, Rebollar PG, Gutiérrez-Adán A, Lorenzo PL. α-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytes. Reprod Fertil Dev. 2018;30:1728–38; DOI:10.1071/RD17525.Arias-ÁlvarezMGarciá-GarciáRMLópez-TelloJRebollarPGGutiérrez-AdánALorenzoPLα-Tocopherol modifies the expression of genes related to oxidative stress and apoptosis during in vitro maturation and enhances the developmental competence of rabbit oocytesReprod Fertil Dev20183017283810.1071/RD17525Open DOISearch in Google Scholar

eISSN:
2544-3577
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Molecular Biology, Biochemistry