Open Access

Statistical Analysis and Trend Detection of the Hydrological Extremes in the Váh River at Liptovský Mikuláš


Cite

Bičárová, S., Holko, L. (2013). Changes of characteristics of daily precipitation and runoff in the High Tatra Mountains, Slovakia over the last fifty years. Contributions to Geophysics and Geodesy, 43(2), 157–177.10.2478/congeo-2013-0010 Search in Google Scholar

Burn, D. H., Hag Elmur, M. A. (2002). Detection of hydrologic trends and variability. J. of Hydrology, 255, 107–122.10.1016/S0022-1694(01)00514-5 Search in Google Scholar

Demeterová, B., Škoda, P. (2009). Low flow in selected streams of Slovakia. J. Hydrol. Hydromech., 57(1), 55–69.10.2478/v10098-009-0006-0 Search in Google Scholar

Falarz, M. (2004). Variability and trends in duration and depth of snow cover in Poland in the 20th century. International Journal of Climatology, 24, 1713–1727.10.1002/joc.1093 Search in Google Scholar

Franke, J., Goldberg, V., Eichelmann, U., Freydank, E., Bernhofer, C. (2004). Statistical analysis of regional climate trends in Saxony, Germany. Climate Research, 27, 145–150.10.3354/cr027145 Search in Google Scholar

Fu, G., Chen, S., Liu, C., Shepard, D. (2004). Hydro-climatic trends of the Yellow River basin for the last 50 years. Climatic Change, 65, 149–178.10.1023/B:CLIM.0000037491.95395.bb Search in Google Scholar

Gilbert, R.O. (1987). Statistical Methods for Environmental Pollution Monitoring. New York: John Wiley & Sons, Inc. Search in Google Scholar

Haan, C.T. (1977). Statistical Methods in Hydrology. The Iowa State University Press (378). www.scribd.com/doc/265472254/Statistical-Methods-in-Hydrology-Charles-T-HAAN Search in Google Scholar

Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363.10.1016/j.jhydrol.2007.11.009 Search in Google Scholar

Hamed, K. H., Rao, A.R. (1998). A Modified Mann-Kendall Trend Test for Autocorrelated Data. Journal of Hydrology, 204(1), 182–196. DOI: 10.1016/S0022-1694(97)00125-X10.1016/S0022-1694(97)00125-X Search in Google Scholar

Helsel, D.R., Frans, L.M. (2006). Regional Kendall Test for Trend. Environmental Science and Technology, 40, 13.10.1021/es051650b16856718 Search in Google Scholar

Hirsch, R.M., Slack, J.R. (1984). A nonparametric trend test for seasonal data with serial dependence. Water Resour. Res., 20(6), 727–732.10.1029/WR020i006p00727 Search in Google Scholar

Hirsch, R.M., Slack, J.R., Smith, R.A. (1982). Techniques of trend analysis for monthly water quality data. Water Resour. Res., 18(1), 107–121.10.1029/WR018i001p00107 Search in Google Scholar

Hladný, J., Pacl, J. (1974). Analysis of the precipitation-runoff relationships in mountain watersheds. J. Hydrol. Hydromech., 22(4), 346–356. Search in Google Scholar

Hlubocký, B., Dulovič, L., Matuška, M., Turčan, J. (1980). Hydrological regime of Bela representative basin. Final report No. 2231. Bratislava: SHMI (97 p.) (in Slovak). Search in Google Scholar

Holko, L., Kostka, Z. (2006). Hydrological research in a high-mountain catchment of the Jalovecky creek. J. Hydrol. Hydromech., 54(2), 192–206.10.2478/johh-2020-0011 Search in Google Scholar

Holko, L., Parajka, J., Majerčaková, O., Faško, P. (2001). Hydrological balance of selected catchments in the Tatra Mountains region in hydrological years 1989 – 1998. J. Hydrol. Hydromech., 49(3–4), 200–222. Search in Google Scholar

Holko, L., Sleziak, P., Danko, M., Bičárová, S., Pociask-Karteczka, J. (2020). Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Water balance components and snow cover. Journal of Hydrology and Hydromechanics, 68(2), 180–191.10.2478/johh-2020-0010 Search in Google Scholar

IPCC Climate Change (2007). The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge. Cambridge, New York: University Press (996 p.). Search in Google Scholar

Jeneiová, K., Kohnová, S., Sabo, M. (2014). Detecting Trends in the Annual Maximum Discharges in the Vah River Basin, Slovakia. Acta Silv. Lign. Hung., 10(2), 133–144. DOI: 10.2478/aslh-2014-0010.10.2478/aslh-2014-0010 Search in Google Scholar

Konček, M. (1974). Klíma Tatier (855 p). Bratislava: Veda (in Slovak). Search in Google Scholar

Lettenmaier, D. P, Wood, E. F., Wallis, J. R. (1994). Hydro-climatological trends in the continental United States, 1948–1988. J. of Climate, 7, 586–607.10.1175/1520-0442(1994)007<0586:HCTITC>2.0.CO;2 Search in Google Scholar

Łupikasza, E., Niedźwiedź, T., Pinskwar, I., Ruiz-Villanueva, V., Kundzewicz, Z. W. (2016). Observed Changes in Air Temperature and Precipitation and Relationship between them, in the Upper Vistula Basin. In Z.W. Kundzewicz, M. Stoffel, T. Niedźwiedź, B. Wyżga (eds.). The Upper Flood Risk in the Upper Vistula Basin, GeoPlanet: Earth and Planetary Sciences, Springer (pp. 155–188). Search in Google Scholar

Majerčáková, O., Škoda, P., Danáčová, Z. (2007). Development of selected hydrological and rainfall characteristics for the periods 1961–2000 and 2001–2006 in the High Tatras. Meteorological journal, 10(4), 205–210. Search in Google Scholar

Molnár, L., Miklánek, P., Trizna, M. (1991). Experimental research of water balance components in the mountainous watershed. J. Hydrol. Hydromech., 39(5–6), 448–456. Search in Google Scholar

Molnár, L., Pacl, J. (1999). The hydrological characteristics of the High Tatra region. Workshop on Hydrology of Mountainous areas. IH SAS (28 p.). Search in Google Scholar

Niedźwiedź, T., Łupikasza, E., Pińskwar, I., Kundzewicz, Z. W., Stoffel, M., Małarzewski, Ł. (2014). Variability of high rainfalls and related synoptic situations causing heavy floods at the northern foothills of the Tatra Mountains. Theor Appl. Climatology. DOI: 10.1007/s00704-014-1108-010.1007/s00704-014-1108-0 Search in Google Scholar

Onoz, B., Bayazit, M. (2003). The power of statistical tests for trend detection. Turkish J. Eng. Environ. Sci., 27, 247–251. <http://journals.tubitak.gov.tr/engineering/issues/muh-03-27-4/muh-27-4-5-0206-6.pdf> Search in Google Scholar

Pacl, J. (1973). Hydrology of the Tatra National Park. Proc. of the works of the Tatra National Park, 15, 181–238. Search in Google Scholar

Pacl, J. (1994). Tatra National Park – Water. Tatranska Lomnica: Publ. TANAP? (pp. 66–78). Search in Google Scholar

Parajka, J. (2000). Estimation of the average basin precipitation for mountain basins in the Western Tatra mountains. ERB2000-Monitoring and modelling catchment water quantity and quality, Belgium: Ghent (pp. 27–29). Search in Google Scholar

Pekarová, P. (2003). Identification of long-term trends and fluctuations of hydrological time series (Part II, Results). Journal of Hydrology and Hydromechanics, 51(2), 97–108. Search in Google Scholar

Pekárová, P., Szolgay, J. (eds.). 2005. Scenarios of changes in selected hydrosphere and biosphere components in the Hrona and Vah catchment areas due to climate change. Bratislava: Veda (496 p.) (in Slovak). Search in Google Scholar

Pekárová, P., Pekár, J., Miklánek, P. (2019). Effect of water on bimodality of air temperature distribution functions and changes in T-year air temperature values in Hurbanovo. Acta Hydrologica Slovaca, 20(1), 53–62.10.31577/ahs-2019-0020.01.0006 Search in Google Scholar

Pribullová, A., Chmelík, M., Pecho, J. (2011). Long-term changes in air temperature in Tatras mountains. The Environment, revue for theory and care of the environment, 45(2), 71–77 (in Slovak). Search in Google Scholar

Pribullová A., Chmelík M., Pecho J. (2013). Air Temperature Variability in the High Tatra Mountains. In J. Kozak, K. Ostapowicz, A. Bytnerowicz, B. Wyżga (eds.). The Carpathians: Integrating Nature and Society Towards Sustainability, Environmental Science and Engineering, Environmental Science, Berlin–Heidelberg: Springer-Verlag (pp. 111–130). Search in Google Scholar

Schoner, W., Auer, I., Bohm, R. (2009). Long term trends of snow depth at Sonnblick (Austrian Alps) and its relation to climate change. Hydrological Processes, 23, 1052–1063.10.1002/hyp.7209 Search in Google Scholar

Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc., 63, 1379–1389.10.1080/01621459.1968.10480934 Search in Google Scholar

Shahid, S. (2011). Trends in extreme rainfall events of Bangladesh. Theoretical and Applied Climatology, 104, 489–499.10.1007/s00704-010-0363-y Search in Google Scholar

Sonali, P., Nagesh Kumar, D. (2013). Review of trend detection methods and their application to detect temperature changes in India. Journal of Hydrology 476, 212–227.10.1016/j.jhydrol.2012.10.034 Search in Google Scholar

Xiong, L., Shenglian, G. (2004). Trend test and change-point detection for the annual discharge series of the Yangtze River at the Yichang hydrological station. Hydrol. Sci. J., 49(1), 99–112.10.1623/hysj.49.1.99.53998 Search in Google Scholar

Yue, S., Pilon, P., Cavadias, G. (2002). Power of Mann-Kendall and Spearman’s rho tests for detecting monotonic trends in hydrological series. J. of Hydrology, 259, 254–271.10.1016/S0022-1694(01)00594-7 Search in Google Scholar

Yue, S., Pilon, P., Phinney, B. (2003). Canadian streamflow trend detection: impacts of serial and cross-correlation. Hydrol. Sci. J., 48(1), 51–64.10.1623/hysj.48.1.51.43478 Search in Google Scholar

Zhang, X., Harvey, K. D., Hogg, W. D., Yuzyk, T. R. (2001). Trends in Canadian streamflow. Water Resour. Res., 37(4), 987–998.10.1029/2000WR900357 Search in Google Scholar

eISSN:
1338-5259
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Green and Sustainable Technology