Open Access

Robotic Swarm Self-Organisation Control


Cite

1. Balkacem K., Foudil, C. (2016), A virtual viscoelastic based aggregation model for self-organization of swarm robots system, TAROS 2016: Towards Autonomous Robotic Systems, 202–213, .10.1007/978-3-319-40379-3_21Search in Google Scholar

2. Brambilla M. Ferrante E., Birattari M., Dorigo M. (2013), Swarm robotics: a review from the swarm engineering perspective, Swarm Intell., 7(1), 1-41.10.1007/s11721-012-0075-2Search in Google Scholar

3. Cheah C.C., Hou S.P., Slotine J.J. (2009), Region-based shape control for a swarm of robots, Automatica, 45(10), 2406-2411.10.1016/j.automatica.2009.06.026Search in Google Scholar

4. Christensen A.L., O’Grady R., Dorigo M. (2009), From fireflies to fault-tolerant swarms of robots, IEEE Transactions on Evolutionary Computation, 13(4), 754-766.10.1109/TEVC.2009.2017516Search in Google Scholar

5. Gazi V. (2005), Swarm aggregations using artificial potentials and sliding-mode control, IEEE Transactions on Robotics, 21(6), 1208-1214.10.1109/TRO.2005.853487Search in Google Scholar

6. Gazi V., Passino K.M. (2003), Stability analysis of swarms, IEEE Transactions on Automatic Control, 48(4), 692-697.10.1109/TAC.2003.809765Search in Google Scholar

7. Gazi V., Passino K.M. (2004), A class of attractions/repulsion functions for stable swarm aggregations, International Journal of Control, 77(18), 1567-1579.10.1080/00207170412331330021Search in Google Scholar

8. Giergiel J., Żylski, W. (2005), Description of motion of a mobile robot by Maggie’s equations, J. Theor. Appl. Mech., 43(3), 511-521.Search in Google Scholar

9. Hendzel Z. (2007), An adaptive critic neural Network for motion control of Wheeler mobile robot, Nonlinear Dynamics, 50, 849-855.10.1007/s11071-007-9234-1Search in Google Scholar

10. Hildenbrandt H., Carere C., Hemelrijk C.K. (2010) Self-organized aerial displays of thousands of starlings: a model, Behavioral Ecology, 21(6), 1349-1359,.10.1093/beheco/arq149Search in Google Scholar

11. Hsieh M.A., Halasz A., Bergman S., Kumar V. (2008), Biologically inspired redistribution of a swarm of robots among multiple sites, Swarm Intelligence, 2(2-4), 121-141.10.1007/s11721-008-0019-zSearch in Google Scholar

12. Lewis F.L., Jagannathan S., Yesildirek A. (1999), Control of Robot Manipulators and Nonlinear Systems, Tylor & Frnacjis, London.Search in Google Scholar

13. Rauch E., Millonas M.M., Chialvo D.R. (1995), Pattern formation and functionality in swarm models, Physics Letters A, 207(3-4), 185-193.10.1016/0375-9601(95)00624-CSearch in Google Scholar

14. Reynolds C.W. (1987) Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Computer Graphics, 21(4), 25-34, New York.10.1145/37402.37406Search in Google Scholar

15. Shucker B., Bennett J.K. (2005), Virtual spring mesh algorithms for control of distributed robotic macrosensors, University of Colorado at Bulder, Technical Report CU-CS-996-05.Search in Google Scholar

16. Spears W.M., Spears D.F., Hamann J.C., Heil R. (2004), Distributed, physics-based control of swarms of vehicles, Autonomous Robots, 17(2-3), 137-162.10.1023/B:AURO.0000033970.96785.f2Search in Google Scholar

17. Spong M.W., Vidyasagar M. (1989), Robot dynamics and control, John Wiley & Sons.Search in Google Scholar

18. Trianni V. (2008), Evolutionary Swarm Robotics: Evolving Self-organising Behaviours in Groups of Autonomous Robots, Studies in Computational Intelligence, 108. Springer, Berlin.Search in Google Scholar

19. Urcola P., Riazuelo L., Lazaro M.T., Montano L. (2008), Cooperative navigation using environment compliant robot formations, IEEE/RSJ International Conference on Intelligent Robots and Systems, 2789-2794.10.1109/IROS.2008.4651107Search in Google Scholar

20. Wiech J., Eremeyev V.A., Giorgio I. (2018), Virtual spring damper method for nonholonomic robotic swarm self-organization and leader following, Continuum Mechanics and Thermodynamics, 1-12, Springer, 201810.1007/s00161-018-0664-4Search in Google Scholar