Open Access

Improving the Quality of the Friction Welding Process of Steel Components


Cite

Budzik, G., Jaskólski, J., 2004. Obciążenia cieplne tłoków silników spalinowych, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 3075-3082. Search in Google Scholar

Chang, AS., 2004. Control points and measures of a quality process, International Journal of Materials & Product Technology, 20(1-3), 205-209. Search in Google Scholar

Czerwińska, K., Dwornicka, R., Pacana, A., 2019. Analysis of non-compliance for the cast of the industrial robot basis, METAL 2019: 28th International Conference on Metallurgy and Materials, Brno, Tanger LTD. Search in Google Scholar

Czerwińska, K., Pacana, A., 2016. Application eddy currents inthe control quality piston diesel, Interdisciplinarity in Theory and Practice, 11, 30-32. Search in Google Scholar

Ferenc, K., Cegielski, P., Chmielewski, T., 2015. Technika spawalnicza w praktyce, Poradnik inżyniera konstruktora i technologa, Verlag Dashofer, Warszawa. Search in Google Scholar

Kimpong, K., Watanabe, T., 2004. Friction Stir Welding of Aluminum Alloy to Steel, Welding Journal, October, 277-282. Search in Google Scholar

Kudła, K., Wojsy, K., Kucharczyk, Z., 2013. Własności zakładkowych złączy spajanych metodą zgrzewania tarciowego z przemieszaniem (FSW – Friction Stir Welding), Obróbka Plastyczna Metali, 24(3), 179-191. Search in Google Scholar

Langabeer, JR., 2018. Performance management methods and tools, Performance Improvement in Hospitals and Health Systems: Managing Analytics and Quality in Healthcare, 2nd Edition, 43-61. Search in Google Scholar

Liu, MZ., Zhao, ZB., Jiang, ZQ., Ge, MG., Ling, L., Luo, Y., Wang, XQ., 2011. Research of correlation-model between qualities attributes and quality control points in assembly process of the complex product based on network flow, Advanced Materials Research, 403-408, 3015. Search in Google Scholar

Melton, T., 2005. The benefits of lean manufacturing - What lean thinking has to offer the process industries, Chemical Engineering Research & Design, 83(6), 662-673. Search in Google Scholar

Pacana, A., Czerwińska, K., Bednarowa, L., 2018. Comprehensive improvement of the surface quality of the diesel engine piston, Metalirgija, 58, 3-4, 329-332. Search in Google Scholar

Pacana, A., Czerwińska, K., 2020. Improving the quality level in the automotive industry, Production Engineering Archives, 26(4), 162–166. https://doi.org/10.30657/pea.2020.26.29 Search in Google Scholar

Pawlowski, K., Pawlowski, E., 2018. Complementarity of modern management methods and tools, and its impact on economic and organizational performance of enterprises, Empirical Results from Polish Enterprises, Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future, 606, 213-221. Search in Google Scholar

Pietrzak, K., Kaliński, D., Chmielewski, M., Chmielewski, T., Włosiński, W., Choręgiewicz, K. 2011. Processing of intermetallics with Al2O3 or steel joints obtained by friction welding technique, 12th Conference of the European Ceramic Society – ECerS XII, Stockholm. Search in Google Scholar

Salacinski, T., Chmielewski, T., Winiarski, M., Cacko, R., Świercz, R., 2018. Roughness of Metal Surface After Finishing Using Ceramic Brush Tools, Advances in Materials Science, 18(1), 20-27. Search in Google Scholar

Seyanin, IF., Deev, VB., Kukharenko, AV., 2015. Resource-saving and environment-saving production technologies of secondary aluminum alloys, Russian Journal of Non-Ferrous Metals, 56(3), 272-276. Search in Google Scholar

Silva, MLN., Pires, GH., Button, ST., 2011. Damage evolution during cross wedge rolling of steel DIN 38MnSiVS5, 11TH International Conference on the Mechanical Behavior of Materials (Icm11), Procedia Engineering, 10. Search in Google Scholar

Singh, P., Batra, U., Sangal, S., 2017. Fracture Toughness Behavior of 38MnSiVS5 Microalloyed Steel After Isothermal Transformation and Thermomechanical Processing, Materials Today-Proceedings, 4(8), 8528-8537. Search in Google Scholar

Wang, HD., Wang, KS., Wang, W., Lu, YX., Peng, P., Han, P., Qiao, K., Liu, ZH., Wang, L., 2020. Microstructure and Mechanical Properties of Low-Carbon Q235 Steel Welded Using Friction Stir Welding, Acta Metallurgica Sinica-English Letters. Search in Google Scholar

Wei, YN., Li, H., Xiao, P., Zou, JT., 2020. Microstructure and Conductivity of the Al-Cu Joint Processed by Friction Stir Welding, Advances in Materials Science and Engineering, 2020, 6845468, 1-10. Search in Google Scholar

Xu, XX., You, GQ., Ding, Yh., Tong, X., Zai, L., Liu, Q., 2020. Microstructure and mechanical properties of inertia friction welded joints between high-strength low-alloy steel and medium carbon steel, Journal of Materials Processing Technology, 286, 116811. Search in Google Scholar

Sato, Y.S., Urata, M., Kokawa, H., 2002. Parameters controlling microstructure and hardness during- friction-stir welding of precipitation-hardenable, Metallurgical and Materials Transactions A, 33A, March, 625-635. Search in Google Scholar

Staniszewska, E., Klimecka-Tatar, D., Obrecht, M., 2020. Eco-design processes in the automotive industry. Production Engineering Archives, 26(4), 131–137. https://doi.org/10.30657/pea.2020.26.25 Search in Google Scholar

Zhang, CH., Huang, GJ., Cao, Y., Zhu, Yl., Huang, XD., Zhou, Y., Li, Ql., Zeng, QH., Liu, Q., 2020. Microstructure evolution of thermo-mechanically affected zone in dissimilar AA2024/7075 joint produced by friction stir welding, VACUUM, 179, 109515. Search in Google Scholar

Zima, S., 2005. Motorkolben: Bauarten, Betrieb, Schäden. Vieweg Verlag, 278. Search in Google Scholar