Open Access

Effectively Tunable Bandpass Waveguide Filter Based on Incorporation of Coupled Cylindrical Resonators Cut in Half


Cite

[1] J. S. Hong, M. J. Lancaster, Microstrip Filters for RF/Microwave Applications. New York: John Wiley & Sons, INC, 2001. ttps://doi.org/10.1002/047122161910.1002/0471221619Search in Google Scholar

[2] R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems: Fundamentals, Design and Applications (2nd ed.). New Jersy: John Wiley, Sons; Inc. Hoboken, 2018. https://doi.org/10.1002/978111929237110.1002/9781119292371Search in Google Scholar

[3] I. C. Hunter, L. Billonet, B. Jarry, and P. Guillon, “Microwave filters-applications and technology,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no.3, pp. 794–805, March 2002. https://doi.org/10.1109/22.98996310.1109/22.989963Search in Google Scholar

[4] G. L. Matthaei, L. Young L, and E. M. T. Jones. Microwave filters, impedance-matching networks, and coupling structures. North Belgin, NJ, USA: McGraw-Hill; 1964. https://doi.org/10.21236/AD040293010.21236/AD0402930Search in Google Scholar

[5] S. B. Cohn, “Microwave Bandpass Filters Containing High-Q Dielectric Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol.16, no.4, pp. 218–227, Apr. 1968. https://doi.org/10.1109/TMTT.1968.112665410.1109/TMTT.1968.1126654Search in Google Scholar

[6] B. Yu. Kapilevich. Waveguide Dielectric Filters. USA: Springfield, International Translation Company, NTIS, 1981 (translated from Russian by K. B. Howe, Moskva, Sviaz, 1980).Search in Google Scholar

[7] R. Levy and S. B. Cohn, “A History of Microwave Filter Research, Design, and Development,” IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 9, pp. 1055–1067, Sep. 1984. https://doi.org/10.1109/TMTT.1984.113281710.1109/TMTT.1984.1132817Search in Google Scholar

[8] J. D. Rhodes, “The generalized direct-coupled cavity linear phase filter,” IEEE Trans. Microwave Theory Tech., vol. 18, no. 6, pp. 308–313, Jun. 1970. https://doi.org/10.1109/TMTT.1970.112722410.1109/TMTT.1970.1127224Search in Google Scholar

[9] A. E. Atia and A. E. Williams, “Narrow-Bandpass Waveguide Filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 20, no.4, pp. 258–265. Apr. 1972. https://doi.org/10.1109/TMTT.1972.112773210.1109/TMTT.1972.1127732Search in Google Scholar

[10] A. E. Atia, A. E. Williams, and R. W. Newcomb, “Narrow-band multiple-coupled cavity synthesis,” IEEE Trans. Circuits Syst., vol. 21, no. 5, pp. 649–655, Sep. 1974. https://doi.org/10.1109/TCS.1974.108391310.1109/TCS.1974.1083913Search in Google Scholar

[11] R. J. Cameron, “General coupling matrix synthesis methods for Chebyshev filtering functions,” IEEE Trans. Microwave Theory Tech., vol. 47, no. 4, pp. 433–442, Apr. 1999. https://doi.org/10.1109/22.75487710.1109/22.754877Search in Google Scholar

[12] R. J. Cameron, “Advanced coupling matrix synthesis techniques for microwave filters,” IEEE Trans. Microwave Theory Tech., vol. 51, no. 1, pp. 1–10, Jan. 2003. https://doi.org/10.1109/TMTT.2002.80693710.1109/TMTT.2002.806937Search in Google Scholar

[13] R. J. Cameron, C. M. Kudsia, and R. R. Mansour, Microwave Filters for Communication Systems, Fundamentals, Design and Applications. New York: Wiley, 2007.Search in Google Scholar

[14] R. J. Cameron, “Advanced Filter Synthesis,” IEEE Microwave Magazine, vol. 12, no.6, pp. 42–61, Oct. 2011. https://doi.org/10.1109/MMM.2011.94200710.1109/MMM.2011.942007Search in Google Scholar

[15] R. Levy, R.V. Snyder, and G. Matthaei, “Design of microwave filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 3, pp. 783–793, Mar. 2002. https://doi.org/10.1109/22.98996210.1109/22.989962Search in Google Scholar

[16] C. Bachiller, H. E. Gonzalez, V. E. B. Esbert, A.B. Martinez, and J.V. Morro, “Efficient Technique for the Cascade Connection of Multiple Two-Port Scattering Matrices,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 9, pp. 1880–1886, Sept. 2007. https://doi.org/10.1109/TMTT.2007.90407610.1109/TMTT.2007.904076Search in Google Scholar

[17] S. Bastioli, C. Tomassoni, and R. Sorrentino, “A New Class of Waveguide Dual-Mode Filters Using TM and Nonresonating Modes,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, Dec. 2010. https://doi.org/10.1109/TMTT.2010.208606810.1109/TMTT.2010.2086068Search in Google Scholar

[18] C. Tomassoni, S. Bastioli, and R Sorrentino, “Generalized TM Dual-Mode Cavity Filters,” IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 12, pp. 3338–3346. Dec. 2011. https://doi.org/10.1109/TMTT.2011.217262210.1109/TMTT.2011.2172622Search in Google Scholar

[19] Q.-X. Chu, X. Ouyang, H. Wang, and F.-C. Chen, “TE_{01delta}-Mode Dielectric-Resonator Filters With Controllable Transmission Zeros,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1086–1094, Mar. 2013. https://doi.org/10.1109/TMTT.2013.223855110.1109/TMTT.2013.2238551Search in Google Scholar

[20] I. D. Robertson, D. Sanchez-Hernandez, and U. Karacaoglu, “CAD techniques for microwave circuits,” Electronics & Communication Engineering Journal, vol. 8, no. 6, pp. 245–256, Dec.1996. https://doi.org/10.1049/ecej:1996060110.1049/ecej:19960601Search in Google Scholar

[21] V. E. Boria, M. Guglielmi, and P. Arcioni, “Computer-aided design of inductively coupled rectangular waveguide filters including tuning elements,” International Journal of RF and Microwave Computer-Aided Engineering, vol. 8 no. 3, pp. 226–235, May 1998. https://doi.org/10.1002/(SICI)1099-047X(199805)8:3<226::AIDMMCE6>3.0.CO;2-HSearch in Google Scholar

[22] C. Bachiller, H. Esteban, V. E. Boria, J. V. Morro, L. J. Rogla, M. Taroncher, A. Belenguer. “Efficient CAD tool of direct-coupled-cavities filters with dielectric resonators,” 2005 IEEE Antennas and Propagation Society International Symposium. IEEE, Washington, DC, USA, pp. 578–581, July 2005. https://doi.org/10.1109/APS.2005.155162410.1109/APS.2005.1551624Search in Google Scholar

[23] J. V. M. Ros, P. S. Pacheco, H. E. Gonzalez, V. E. B. Esbert, C. B. Martin, M. T. Calduch, and B. G. Martinez, “Fast automated design of waveguide filters using aggressive space mapping with a new segmentation strategy and a hybrid optimization algorithm,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1130–1142, Apr. 2005. https://doi.org/10.1109/TMTT.2005.84568510.1109/TMTT.2005.845685Search in Google Scholar

[24] J. C. Melgarejo, J. Ossorio, S. Cogollos, M. Guglielmi, V. E. Boria, and J. W. Bandler, “On Space Mapping Techniques for Microwave Filter Tuning,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, no. 12, 2019, pp. 4860–4870. https://doi.org/10.1109/TMTT.2019.294436110.1109/TMTT.2019.2944361Search in Google Scholar

[25] J. W. Bandler, Q. S. Cheng, S. A. Dakroury, A. S. Mohamed, M. H. Bakr, K. Madsen, and J. Sondergaard, “Space Mapping: The State of the Art,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 1, pp. 337–361, Jan. 2004. https://doi.org/10.1109/TMTT.2003.82090410.1109/TMTT.2003.820904Search in Google Scholar

[26] WASP NET‘s wide application range for accurate, fast EM CAD and optimization of all kinds of passive microwave components [Online]. Available: http://www.mig-germany.com/seite18.html [Accessed Nov. 10. 2019].Search in Google Scholar

[27] S. Bastioli and R. V. Snyder, “Inline Pseudoelliptic TE_{01delta}-Mode Dielectric Resonator Filters Using Multiple Evanescent Modes to Selectively Bypass Orthogonal Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 12, pp. 3988–4001, Dec. 2012. https://doi.org/10.1109/TMTT.2012.222265910.1109/TMTT.2012.2222659Search in Google Scholar

[28] C. Tomassoni, S. Bastioli, and R. V. Snyder, R. V. “Propagating Waveguide Filters Using Dielectric Resonators,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 12, pp. 4366–4375, Dec. 2015. https://doi.org/10.1109/TMTT.2015.249528410.1109/TMTT.2015.2495284Search in Google Scholar

[29] C. Bachiller, H. Esteban, J. V. Morro, and V. Boria, “Hybrid mode matching method for the efficient analysis of rods in waveguided structures,” Mathematical and Computer Modelling, vol. 57, no. 7-8, pp. 1832–1839, Apr. 2013. https://doi.org/10.1016/j.mcm.2011.11.07610.1016/j.mcm.2011.11.076Search in Google Scholar

[30] H. Aghayari, J. Nourinia, C. Ghobadi, and B. Mohammadi, “Realization of dielectric loaded waveguide filter with substrate integrated waveguide technique based on incorporation of two substrates with different relative permittivity,” AEU – International Journal of Electronics and Communications, vol. 86, pp. 17–24, Mar. 2018. https://doi.org/10.1016/j.aeue.2018.01.00810.1016/j.aeue.2018.01.008Search in Google Scholar

[31] F. D. Q. Pereira, V. E. B. Esbert, J. P. Garcia, A. V. Pantaleoni, A. A. Melcon, J. G. L. Tornero, and B. Gimeno, “Efficient Analysis of Arbitrarily Shaped Inductive Obstacles in Rectangular Waveguides Using a Surface Integral-Equation Formulation,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 715–721, Apr. 2007. https://doi.org/10.1109/TMTT.2007.89367310.1109/TMTT.2007.893673Search in Google Scholar

[32] R. Kushnin, J. Semenjako, Y. V. Shestopalov, “Accelerated Boundary Integral Method for Solving the Problem of Scattering by Multiple Multilayered Circular Cylindrical Posts in a Rectangular Waveguide,” 2017 Progress In Electromagnetics Research Symposium – Spring (PIERS), St. Peterburg, Russia, pp. 3263–3271, May 2017. https://doi.org/10.1109/PIERS.2017.826232010.1109/PIERS.2017.8262320Search in Google Scholar

[33] C. Bachiller, H. Esteban, H. Mata, M. A. Valdes, V. E. Boria, Á Belenguer, and J. V. Morro, “Hybrid Mode Matching Method for the Efficient Analysis of Metal and Dielectric Rods in H Plane Rectangular Waveguide Devices,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3634–3644, Dec. 2010. https://doi.org/10.1109/TMTT.2010.208395110.1109/TMTT.2010.2083951Search in Google Scholar

[34] Trans Tech. Products for RF/Microwave Applications [Online]. Available: http://www.trans-techinc.com/files/tti_catalog.pdf [Accessed 12 Oct. 2018].Search in Google Scholar

[35] EXXELIA TEMEX. Dielectric resonators 07/2015 [Online]. Available: https://exxelia.com/uploads/PDF/e7000-v1.pdf [Accessed 8 Oct.2019].Search in Google Scholar

[36] M. Y. Sandhu and I. C. Hunter, “Miniaturized dielectric waveguide filters,” International Journal of Electronics, vol. 103, issue 10, pp. 1776–1787, 2016. https://doi.org/10.1080/00207217.2016.113853110.1080/00207217.2016.1138531Search in Google Scholar

[37] R. Snyder, “Practical aspects of microwave filter development,” IEEE Microwave Magazine, vol. 8, no. 2, pp. 42–54, Apr. 2007. https://doi.org/10.1109/MMW.2007.33552810.1109/MMW.2007.335528Search in Google Scholar

[38] J. Ossorio, V. E. Boria, M. Guglielmi, “Dielectric Tuning Screws for Microwave Filters Applications.” 2018 IEEE/MTT-S International Microwave Symposium – IMS, Philadelphia, PA, USA, pp. 1253–1256, June 2018. https://doi.org/10.1109/MWSYM.2018.843985710.1109/MWSYM.2018.8439857Search in Google Scholar

[39] P. Harscher and P. Vahldieck, R. “Automated computer-controlled tuning of waveguide filters using adaptive network models,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 11, pp. 2125–2130, Nov. 2001. https://doi.org/10.1109/22.96314710.1109/22.963147Search in Google Scholar

[40] RF Microwave. 5.8 – 11 GHz wide bandwidth band-pass filter, SMA female connectors [Online]. Available: https://www.rf-microwave.com/en/nbp/nmp/5-8-11-ghz-wide-bandwidth-band-pass-filter-sma-female-connectors/fbp-5.8-11g/. [Accessed 01 Nov. 2019]Search in Google Scholar

[41] SAGE, Millimeter, Inc. 29 to 35 GHz Passband, 40 dB Rejection from DC to 27 GHz and 37 to 45 GHz, Ka Band, WR-28 Waveguide Bandpass Filter [Online]. Available: https://www.sagemillimeter.com/29-to-35-ghz-passband-40-db-rejection-from-dc-to-27-ghz-and-37-to-45-ghz-ka-band-wr-28-waveguide-bandpass-filter/ [Accessed 01 Nov. 2019].Search in Google Scholar

[42] J. B. Ness and V. A. Lenivenko, “Design and manufacture of ‘exact’ waveguide filters,” 2000 Asia-Pacific Microwave Conference Proceedings (Cat. No.00TH8522), 3–6 Dec. 2000, Sydney, NSW, Australia, pp. 507–511. https://doi.org/10.1109/APMC.2000.92588410.1109/APMC.2000.925884Search in Google Scholar

[43] J. Zhou and J. Huang, “Intelligent tuning for microwave filters based on multi-kernel machine learning model,” 5th IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 29–31 Oct. Chengdu, China, pp. 259–266, Dec. 2013. https://doi.org/10.1109/MAPE.2013.668988110.1109/MAPE.2013.6689881Search in Google Scholar

[44] V. Miraftab and R. R. Mansour, “Computer-aided tuning of microwave filters using fuzzy logic,” IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 12, pp. 2781–2788, Dec. 2002. https://doi.org/10.1109/TMTT.2002.80529110.1109/TMTT.2002.805291Search in Google Scholar

[45] K. Kimsis, J. Semenjako, R. Kushnin, A. Viduzs, “A Numerical Implementation of Efficient Cross-section Method for the Analysis of Arbitrarily Shaped Dielectric Obstacles in Rectangular Waveguide,” 2017 Progress in Electromagnetics Research Symposium - Spring (PIERS), St. Petersburg, Russia, pp. 3937–3943, May 2017. https://doi.org/10.1109/PIERS.2017.826232010.1109/PIERS.2017.8262320Search in Google Scholar

eISSN:
2255-9159
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other