Open Access

Annual course of temperature and precipitation as proximal predictors of birds’ responses to climatic changes on the species and community level


Cite

Alasmary, Z., Todd, T., Hettiarachchi, G.M., Stefanovska, T., Pidlisnyuk, V., Roozeboom, K., Zhukov, O., 2020. Effect of soil treatments and amendments on the nematode community under Miscanthus growing in a lead contaminated military site. Agronomy, 10 (11): 1727. https://doi.org/10.3390/agronomy1011172710.3390/agronomy10111727 Search in Google Scholar

Austin, M.P., 1976. On non-linear species response models in ordination. Vegetatio, 33 (1): 33–41. https://doi.org/10.1007/BF0005529710.1007/BF00055297 Search in Google Scholar

Austin, M.P., 1980. Searching for a model for use in vegetation analysis. Vegetatio, 42 (1–3): 11–21. https://doi.org/10.1007/BF0004886510.1007/BF00048865 Search in Google Scholar

Austin, M.P, 2002. Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecological Modelling, 157 (2–3): 101–118. https://doi.org/10.1016/S0304-3800(02)00205-310.1016/S0304-3800(02)00205-3 Search in Google Scholar

Austin, M.P., Van Niel, K.P., 2011. Improving species distribution models for climate change studies: variable selection and scale. Journal of Biogeography, 38 (1): 1–8. https://doi.org/10.1111/j.1365-2699.2010.02416.x10.1111/j.1365-2699.2010.02416.x Search in Google Scholar

Barbet-Massin, M., Thuiller, W., Jiguet, F., 2012. The fate of European breeding birds under climate, land-use and dispersal scenarios. Global Change Biology, 18 (3): 881–890. https://doi.org/10.1111/j.1365-2486.2011.02552.x10.1111/j.1365-2486.2011.02552.x Search in Google Scholar

Barnagaud, J.-Y., Devictor, V., Jiguet, F., Barbet-Massin, M., Le Viol, I., Archaux, F., 2012. Relating habitat and climatic niches in birds. PLoS ONE, 7 (3): e32819. https://doi.org/10.1371/journal.pone.003281910.1371/journal.pone.0032819329969422427891 Search in Google Scholar

Bateman, B.L., VanDerWal, J., Williams, S.E., Johnson, C.N., 2012. Biotic interactions influence the projected distribution of a specialist mammal under climate change. Diversity and Distributions, 18 (9): 861–872. https://doi.org/10.1111/j.1472-4642.2012.00922.x10.1111/j.1472-4642.2012.00922.x Search in Google Scholar

Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W., Courchamp, F., 2012. Impacts of climate change on the future of biodiversity. Ecology Letters, 15 (4): 365–377. https://doi.org/10.1111/j.1461-0248.2011.01736.x10.1111/j.1461-0248.2011.01736.x388058422257223 Search in Google Scholar

Bibby, C., Burgess, N., Hill, D., Mustoe, S., 2000. Bird census techniques. 2nd ed. London: Academic Press. 302 p. Search in Google Scholar

Blinkova, O., Shupova, T., 2018. Bird communities and vegetation composition in natural and semi-natural forests of megalopolis: correlations and comparisons of diversity indices (Kyiv city, Ukraine). Ekológia (Bratislava), 37 (3): 259–288. https://doi.org/10.2478/eko-2018-002110.2478/eko-2018-0021 Search in Google Scholar

Blinkova, O.I., Shupova, T.V., Raichuk, L.A., 2020. Synecological connections and comparison of α-diversity indices of plant and bird communities on cultivated coenosises. Journal of Landscape Ecology, 13 (2): 62–78. https://doi.org/10.2478/jlecol-2020-001010.2478/jlecol-2020-0010 Search in Google Scholar

Bondarev, D.L., Kunah, O.M., Fedushko, M.P., Gubanova, N.L., 2019. The impact of temporal patterns of temperature and precipitation on silver Prussian carp (Carassius gibelio) spawning events. Biosystems Diversity, 27 (2): 106–117. https://doi.org/10.15421/01191510.15421/011915 Search in Google Scholar

Bondarev, D.L., Zhukov, O.V., 2017. Spawning phenology of the white bream (Blicca bjoerkna) in the “Dnieper-Orylskiy” Nature Reserve in relation to seasonal temperature dynamic. Biosystems Diversity, 25 (2): 67–73. https://doi.org/10.15421/01171010.15421/011710 Search in Google Scholar

Bonthoux, S., Barnagaud, J.-Y., Goulard, M., Balent, G., 2013. Contrasting spatial and temporal responses of bird communities to landscape changes. Oecologia, 172 (2): 563–574. https://doi.org/10.1007/s00442-012-2498-210.1007/s00442-012-2498-223080303 Search in Google Scholar

Bowler, D., Böhning-Gaese, K., 2017. Improving the community-temperature index as a climate change indicator. PLoS ONE, 12 (9): e0184275. https://doi.org/10.1371/journal.pone.018427510.1371/journal.pone.0184275559531028898285 Search in Google Scholar

Bradie, J., Leung, B., 2017. A quantitative synthesis of the importance of variables used in MaxEnt species distribution models. Journal of Biogeography, 44 (6): 1344–1361. https://doi.org/10.1111/jbi.1289410.1111/jbi.12894 Search in Google Scholar

Brown, J.H., Valone, T.J., Curtin, C.G., 1997. Reorganization of an arid ecosystem in response to recent climate change. Proceedings of the National Academy of Sciences, 94 (18): 9729–9733. https://doi.org/10.1073/pnas.94.18.972910.1073/pnas.94.18.97292325811038570 Search in Google Scholar

Burnham, K.P., Anderson, D.R., 2002. Model selection and multimodel inference: a practical information-theoretic approach. Berlin: Springer. 488 p. Search in Google Scholar

Carroll, E., Sparks, T., Donnelly, A., Cooney, T., 2009. Irish phenological observations from the early 20th century reveal a strong response to temperature. Biology & Environment: Proceedings of the Royal Irish Academy, 109 (2): 115–122. https://doi.org/10.3318/BIOE.2009.109.2.11510.3318/BIOE.2009.109.2.115 Search in Google Scholar

Chamberlain, S., 2020. rnoaa: “NOAA” Weather data from R. R package version 1.2.0. [cit.2021-10-31]. https://cran.r-project.org/package=rnoaa Search in Google Scholar

Clode, D., Macdonald, D.W., 2002. Invasive predators and the conservation of island birds: the case of American Mink Mustela vison and terns Sterna spp. in the Western Isles, Scotland. Bird Study, 49 (2): 118–123. https://doi.org/10.1080/0006365020946125510.1080/00063650209461255 Search in Google Scholar

Côté, I.M., Sutherland, W.J., 1997. The effectiveness of removing predators to protect bird populations. Conservation Biology, 11 (2): 395–405. https://doi.org/10.1046/j.1523-1739.1997.95410.x10.1046/j.1523-1739.1997.95410.x Search in Google Scholar

Crick, H.Q.P., 2004. The impact of climate change on birds. Ibis, 146: 48–56. https://doi.org/10.1111/j.1474-919X.2004.00327.x10.1111/j.1474-919X.2004.00327.x Search in Google Scholar

Cushman, S.A., McGarigal, K., 2004. Hierarchical analysis of forest bird species–environment relationships in the Oregon coast range. Ecological Applications, 14 (4): 1090–1105. https://doi.org/10.1890/03-513110.1890/03-5131 Search in Google Scholar

De Cáceres, M., Coll, L., Legendre, P., Allen, R.B., Wiser, S.K., Fortin, M., Condit, R., Hubbell, S., 2019. Trajectory analysis in community ecology. Ecological Monographs, 89 (2): e01350. https://doi.org/10.1002/ecm.135010.1002/ecm.1350 Search in Google Scholar

De Cáceres, M., Font, X., Oliva, F., 2010. The management of vegetation classifications with fuzzy clustering. Journal of Vegetation Science, 21 (6): 1138–1151. https://doi.org/10.1111/j.1654-1103.2010.01211.x10.1111/j.1654-1103.2010.01211.x Search in Google Scholar

De Frenne, P., Rodriguez-Sanchez, F., Coomes, D.A., Baeten, L., Verstraeten, G., Vellend, M., Bernhardt-Roemermann, M., Brown, C.D., Brunet, J., Cornelis, J., Decocq, G.M., Dierschke, H., Eriksson, O., Gilliam, F.S., Hedl, R., Heinken, T., Hermy, M., Hommel, P., Jenkins, M.A., Kelly, D. L., Kirby, K.J., Mitchell, F.J.G., Naaf, T., Newman, M., Peterken, G., Petrik, P., Schultz, J., Sonnier, G., Van Calster, H., Waller, D.M., Walther, G.-R., White, P.S., Woods, K.D., Wulf, M., Graae, B.J., Verheyen, K., 2013. Microclimate moderates plant responses to macroclimate warming. Proceedings of the National Academy of Sciences, 110 (46): 18561–18565. https://doi.org/10.1073/pnas.131119011010.1073/pnas.1311190110383202724167287 Search in Google Scholar

Devictor, V., Clavel, J., Julliard, R., Lavergne, S., Mouillot, D., Thuiller, W., Venail, P., Villéger, S., Mouquet, N., 2010. Defining and measuring ecological specialization. Journal of Applied Ecology, 47 (1): 15–25. https://doi.org/10.1111/j.1365-2664.2009.01744.x10.1111/j.1365-2664.2009.01744.x Search in Google Scholar

Devictor, V., Julliard, R., Couvet, D., Jiguet, F., 2008. Birds are tracking climate warming, but not fast enough. Proceedings of the Royal Society B: Biological Sciences, 275 (1652): 2743–2748. https://doi.org/10.1098/rspb.2008.087810.1098/rspb.2008.0878260582318713715 Search in Google Scholar

Devictor, V., van Swaay, C., Brereton, T., Brotons, L., Chamberlain, D., Heliölä, J., Herrando, S., Julliard, R., Kuussaari, M., Lindström, Å., Reif, J., Roy, D.B., Schweiger, O., Settele, J., Stefanescu, C., Van Serien, A., Van Turnhout, C., Vermouzek, Z., DeVries, M.W., Wynhoff, I., Jiguet, F., 2012. Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2 (2): 121–124. https://doi.org/10.1038/nclimate134710.1038/nclimate1347 Search in Google Scholar

Dreslerová, J., 2017. Memorial trees in the Czech landscape. Journal of Landscape Ecology, 10 (2): 79–108. https://doi.org/10.1515/jlecol-2017-001910.1515/jlecol-2017-0019 Search in Google Scholar

Elith, J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., Yates, C.J., 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17 (1): 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x10.1111/j.1472-4642.2010.00725.x Search in Google Scholar

Fahrig, L., 2003. Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34: 487–515. https://doi.org/10.1146/annurev.ecolsys.34.011802.13241910.1146/annurev.ecolsys.34.011802.132419 Search in Google Scholar

Gardner, A.S., Maclean, I.M.D., Gaston, K.J., 2019. Climatic predictors of species distributions neglect biophysiologically meaningful variables. Diversity and Distributions, 25: 1318–1333. https://doi.org/10.1111/ddi.1293910.1111/ddi.12939 Search in Google Scholar

Godet, L., Jaffré, M., Devictor, V., 2011. Waders in winter: long-term changes of migratory bird assemblages facing climate change. Biology Letters, 7 (5): 714–717. https://doi.org/10.1098/rsbl.2011.015210.1098/rsbl.2011.0152316904721429911 Search in Google Scholar

Grimm, N.B., Chapin, F.S., Bierwagen, B., Gonzalez, P., Groffman, P.M., Luo, Y., Melton, F., Nadelhoffer, K., Pairis, A., Raymond, P.A., Schimel, J., Williamson, C.E., 2013. The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 11 (9): 474–482. https://doi.org/10.1890/12028210.1890/120282 Search in Google Scholar

Halupka, L., Halupka, K., 2017. The effect of climate change on the duration of avian breeding seasons: a meta-analysis. Proceedings of the Royal Society B: Biological Sciences, 284 (1867): 20171710. https://doi.org/10.1098/rspb.2017.171010.1098/rspb.2017.1710571917129167360 Search in Google Scholar

Heikinheimo, M., Lappalainen, H., 1997. Dependence of the flower budburst of some plant taxa in Finland on effective temperature sum: some implications for climate warming. Annales Botanici Fennici, 34: 229–243. Search in Google Scholar

Huisman, J., Olff, H., Fresco, L.F.M., 1993. A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4 (1): 37–46. https://doi.org/10.2307/323573210.2307/3235732 Search in Google Scholar

Jansen, F., 2013. Hierarchical species response curves in package eHOF. 9 p. [cit. 2020-10-23]. ftp://mirror.hmdc. harvard.edu/mirrors/cran.r-project.org/web/packages/eHOF/vignettes/eHOF.pdf Search in Google Scholar

Jansen, F., Oksanen, J., 2013. How to model species responses along ecological gradients – Huisman-Olff-Fresco models revisited. Journal of Vegetation Science, 24 (6): 1108–1117. https://doi.org/10.1111/jvs.1205010.1111/jvs.12050 Search in Google Scholar

Jetz, W., Wilcove, D.S., Dobson, A.P., 2007. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology, 5 (6): e157. https://doi.org/10.1371/journal.pbio.005015710.1371/journal.pbio.0050157188583417550306 Search in Google Scholar

Kampichler, C., van Turnhout, C.A.M., Devictor, V., van der Jeugd, H.P., 2012. Large-scale changes in community composition: determining land use and climate change signals. PLoS ONE, 7 (4). https://doi.org/10.1371/journal.pone.003527210.1371/journal.pone.0035272332765022523579 Search in Google Scholar

Konapala, G., Mishra, A.K., Wada, Y., Mann, M.E., 2020. Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nature Communications, 11 (1): 3044. https://doi.org/10.1038/s41467-020-16757-w10.1038/s41467-020-16757-w731154932576822 Search in Google Scholar

Korňan, M., Adamík, P., 2014. Structure of the breeding bird assemblage of a natural beech-spruce forest in the Šútovská dolina National Nature Reserve, the Malá Fatra Mts. Ekológia, Bratislava: 33 (2): 138–150. https://doi.org/10.2478/eko-2014-001410.2478/eko-2014-0014 Search in Google Scholar

Krosby, M., Wilsey, C.B., McGuire, J.L., Duggan, J.M., Nogeire, T.M., Heinrichs, J.A., Tewksbury, J.J., Lawler, J.J., 2015. Climate-induced range overlap among closely related species. Nature Climate Change, 5 (9): 883–886. https://doi.org/10.1038/nclimate269910.1038/nclimate2699 Search in Google Scholar

Kunah, O.M., Pakhomov, O.Y., Zymaroieva, А.А., Demchuk, N.I., Skupskyi, R.M., Bezuhla, L.S., Vladyka, Y.P., 2018. Agroeconomic and agroecological aspects of spatial variation of rye (Secale cereale) yields within Polesia and the Forest-Steppe zone of Ukraine: the usage of geographically weighted principal components analysis. Biosystems Diversity, 26 (4): 276–285. https://doi.org/10.15421/01184210.15421/011842 Search in Google Scholar

Kunah, O.M., Zelenko, Y.V., Fedushko, M.P., Babchenko, A.V., Sirovatko, V.O., Zhukov, O.V., 2019. The temporal dynamics of readily available soil moisture for plants in the technosols of the Nikopol Manganese Ore Basin. Biosystems Diversity, 27 (2): 156–162. https://doi.org/10.15421/01192110.15421/011921 Search in Google Scholar

Lee, W.H., Abdullah, S.A., Nor, S.B.M., 2019. Land use and landscape pattern changes on the inside and outside of protected areas in urbanizing Selangor State, Peninsular Malaysia. Journal of Landscape Ecology, 12 (2): 41–63. https://doi.org/10.2478/jlecol-2019-000910.2478/jlecol-2019-0009 Search in Google Scholar

Legendre, P., Birks, H.J.B., 2012. From classical to canonical ordination. In Birks, H. J. B., Lotter, A. F., Juggins, S., Smol, J.P. (eds). Tracking environmental change using lake sediments: data handling and numerical techniques. Dordrecht: Springer, p. 201–248.10.1007/978-94-007-2745-8_8 Search in Google Scholar

Legendre, P., Gallagher, E.D., 2001. Ecologically meaningful transformations for ordination of species data. Oecologia, 129 (2): 271–280. https://doi.org/10.1007/s00442010071610.1007/s00442010071628547606 Search in Google Scholar

Luoto, M., Virkkala, R., Heikkinen, R.K., 2007. The role of land cover in bioclimatic models depends on spatial resolution. Global Ecology and Biogeography, 16 (1): 34–42. https://doi.org/10.1111/j.1466-8238.2006.00262.x10.1111/j.1466-8238.2006.00262.x Search in Google Scholar

Mäntylä, E., Klemola, T., Laaksonen, T., 2011. Birds help plants: a meta-analysis of top-down trophic cascades caused by avian predators. Oecologia, 165 (1): 143–151. https://doi.org/10.1007/s00442-010-1774-210.1007/s00442-010-1774-220852895 Search in Google Scholar

Marcuzzi, G., 1979. The steppe. In European ecosystems. Biogeographica, 15. Dordrecht: Springer Netherlands, p. 289–342. https://doi.org/10.1007/978-94-009-9616-8_510.1007/978-94-009-9616-8_5 Search in Google Scholar

Martin, T.E., Maron, J.L., 2012. Climate impacts on bird and plant communities from altered animal–plant interactions. Nature Climate Change, 2 (3): 195–200. https://doi.org/10.1038/nclimate134810.1038/nclimate1348 Search in Google Scholar

Matthews, W.J., Marsh-Matthews, E., Cashner, R.C., Gelwick, F., 2013. Disturbance and trajectory of change in a stream fish community over four decades. Oecologia, 173 (3): 955–969. https://doi.org/10.1007/s00442-013-2646-310.1007/s00442-013-2646-3 Search in Google Scholar

Mayfield, A.B., Chan, P.-H., Putnam, H.M., Chen, C.-S., Fan, T.-Y., 2012. The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: results from a laboratory-based reciprocal transplant. Journal of Experimental Biology, 215 (23): 4183–4195. https://doi.org/10.1242/jeb.07168810.1242/jeb.071688 Search in Google Scholar

Merow, C., Smith, M.J., Edwards, T.C., Guisan, A., McMahon, S.M., Normand, S., Thuiller, W., Wüest, R.O., Zimmermann, N.E., Elith, J., 2014. What do we gain from simplicity versus complexity in species distribution models? Ecography, 37 (12): 1267–1281. https://doi.org/10.1111/ecog.0084510.1111/ecog.00845 Search in Google Scholar

Metz, J., Tielbörger, K., 2016. Spatial and temporal aridity gradients provide poor proxies for plant– plant interactions under climate change: a large-scale experiment. Functional Ecology, 30 (1): 20–29. https://doi.org/10.1111/1365-2435.1259910.1111/1365-2435.12599 Search in Google Scholar

Michaelis, J., Diekmann, M.R., 2017. Biased niches – species response curves and niche attributes from Huisman-Olff-Fresco models change with differing species prevalence and frequency. PLoS ONE, 12 (8): 1–16. https://doi.org/10.1371/journal.pone.018315210.1371/journal.pone.0183152 Search in Google Scholar

Miller, W., 2008. The hierarchical structure of ecosystems: connections to evolution. Evolution: Education and Outreach, 1 (1): 16–24. https://doi.org/10.1007/s12052-007-0016-510.1007/s12052-007-0016-5 Search in Google Scholar

Mucina, L., 2019. Biome: evolution of a crucial ecological and biogeographical concept. New Phytologist, 222 (1): 97–114. https://doi.org/10.1111/nph.1560910.1111/nph.15609 Search in Google Scholar

Murphy, G.E.P., Romanuk, T.N., Worm, B., 2020. Cascading effects of climate change on plankton community structure. Ecology and Evolution, 10 (4): 2170–2181. https://doi.org/10.1002/ece3.605510.1002/ece3.6055 Search in Google Scholar

Novikov, G.A., 1953. Polevye issledovaniya po ekologii nazemnykh pozvonochnykh [Field studies on the ecology of terrestrial vertebrates]. Moscow: Izd. AN SSSR. Search in Google Scholar

O’Connor, R.J., 1988. Multivariate analysis of ecological communities. Trends in Ecology & Evolution, 3 (5): 121. https://doi.org/10.1016/0169-5347(88)90124-310.1016/0169-5347(88)90124-3 Search in Google Scholar

Oedekoven, C.S., Elston, D.A., Harrison, P.J., Brewer, M.J., Buckland, S.T., Johnston, A., Pearce-Higgins, J.W., 2017. Attributing changes in the distribution of species abundance to weather variables using the example of British breeding birds. Methods in Ecology and Evolution, 8 (12): 1690–1702. https://doi.org/10.1111/2041-210X.1281110.1111/2041-210X.12811 Search in Google Scholar

Oksanen, J., 2012. Constrained ordination: tutorial with R and vegan preliminaries: inspecting data. R- Package Vegan. 9 p. [cit. 2020-11-03]. https://www.mooreecology.com/uploads/2/4/2/1/24213970/constrained_ordination.pdf Search in Google Scholar

Pakhomov, O.Y., Kunakh, O.M., Babchenko, A.V., Fedushko, M.P., Demchuk, N.I., Bezuhla, L.S., Tkachenko, O.S., 2019. Temperature effect on the temporal dynamic of terrestrial invertebrates in technosols formed after reclamation at a post-mining site in Ukrainian steppe drylands. Biosystems Diversity, 27 (4): 322–328. https://doi.org/10.15421/01194210.15421/011942 Search in Google Scholar

Parmesan, C., 2006. December ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37: 637–669. https://doi.org/10.1146/annurev.ecolsys.37.091305.11010010.1146/annurev.ecolsys.37.091305.110100 Search in Google Scholar

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421 (6918): 37–42. https://doi.org/10.1038/nature0128610.1038/nature0128612511946 Search in Google Scholar

Pautasso, M., 2012. Observed impacts of climate change on terrestrial birds in Europe: an overview. Italian Journal of Zoology, 79 (2): 296–314. https://doi.org/10.1080/11250003.2011.62738110.1080/11250003.2011.627381 Search in Google Scholar

Pearson, R.G., Dawson, T.P., 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12 (5): 361–371. https://doi.org/10.1046/j.1466-822X.2003.00042.x10.1046/j.1466-822X.2003.00042.x Search in Google Scholar

Perrins, C.M., 2008. The timing of birds’ breeding seasons. Ibis, 112 (2): 242–255. https://doi.org/10.1111/j.1474-919X.1970.tb00096.x10.1111/j.1474-919X.1970.tb00096.x Search in Google Scholar

Piedallu, C., Gégout, J.-C., Lebourgeois, F., Seynave, I., 2016. Soil aeration, water deficit, nitrogen availability, acidity and temperature all contribute to shaping tree species distribution in temperate forests. Journal of Vegetation Science, 27 (2): 387–399. https://doi.org/10.1111/jvs.1237010.1111/jvs.12370 Search in Google Scholar

Pimm, S.L., 2009. Climate disruption and biodiversity. Current Biology, 19 (14): R595–R601. https://doi.org/10.1016/j.cub.2009.05.05510.1016/j.cub.2009.05.05519640498 Search in Google Scholar

Pulliam, H.R., 2000. On the relationship between niche and distribution. Ecology Letters, 3 (4): 349–361. https://doi.org/10.1046/j.1461-0248.2000.00143.x10.1046/j.1461-0248.2000.00143.x Search in Google Scholar

R Core Team, 2020. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [cit. 2021-05-11]. https://www.r-project.org/ Search in Google Scholar

Reif, J., Telenský, T., Šťastný, K., Bejček, V., Klvaňa, P., 2010. Relationships between winter temperature and breeding bird abundance on community level: importance of interspecific differences in diet. Folia Zoologica, 59 (4): 313–322. https://doi.org/10.25225/fozo.v59.i4.a7.201010.25225/fozo.v59.i4.a7.2010 Search in Google Scholar

Roth, T., Plattner, M., Amrhein, V., 2014. Plants, birds and butterflies: short-term responses of species communities to climate warming vary by taxon and with altitude. PLoS ONE, 9 (1): e82490. https://doi.org/10.1371/journal.pone.008249010.1371/journal.pone.0082490 Search in Google Scholar

Sexton, J.P., McIntyre, P.J., Angert, A.L., Rice, K.J., 2009. Evolution and ecology of species range limits. Annual Review of Ecology, Evolution, and Systematics, 40 (1): 415–436. https://doi.org/10.1146/annurev.ecolsys.110308.12031710.1146/annurev.ecolsys.110308.120317 Search in Google Scholar

Shelford, V.E., 1931. Some concepts of bioecology. Ecology, 12 (3): 455–467. https://doi.org/10.2307/192899110.2307/1928991 Search in Google Scholar

Shrivastava, P., Kumar, R., 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22 (2): 123–131. https://doi.org/10.1016/j.sjbs.2014.12.00110.1016/j.sjbs.2014.12.001 Search in Google Scholar

Smith, R.K., Pullin, A.S., Stewart, G.B., Sutherland, W.J., 2010. Effectiveness of predator removal for enhancing bird populations. Conservation Biology, 24 (3): 820–829. https://doi.org/10.1111/j.1523-1739.2009.01421.x10.1111/j.1523-1739.2009.01421.x Search in Google Scholar

Teixeira, J., Pereira, L., 1992. ISAREG, an irrigation scheduling model. ICID Bulletin, 41 (2): 29–48. Search in Google Scholar

Ter Braak, C.J.F., Prentice, I.C., 1988. A theory of gradient analysis. Advances in Ecological Research, 18(C): 271–317. https://doi.org/10.1016/S0065-2504(08)60183-X10.1016/S0065-2504(08)60183-X Search in Google Scholar

Ter Braak, C.J.F., Šmilauer, P., 2015. Topics in constrained and unconstrained ordination. Plant Ecology, 216 (5): 683–696. https://doi.org/10.1007/s11258-014-0356-510.1007/s11258-014-0356-5 Search in Google Scholar

Thuiller, W., Araújo, M.B., Lavorel, S., 2004. Do we need land-cover data to model species distributions in Europe? Journal of Biogeography, 31 (3): 353–361. https://doi.org/10.1046/j.0305-0270.2003.00991.x10.1046/j.0305-0270.2003.00991.x Search in Google Scholar

Thum, T., Aalto, T., Laurila, T., Aurela, M., Hatakka, J., Lindroth, A., Vesala, T., 2009. Spring initiation and autumn cessation of boreal coniferous forest CO2 exchange assessed by meteorological and biological variables. Tellus B: Chemical and Physical Meteorology, 61 (5): 701–717. https://doi.org/10.1111/j.1600-0889.2009.00441.x10.1111/j.1600-0889.2009.00441.x Search in Google Scholar

Titeux, N., Maes, D., Van Daele, T., Onkelinx, T., Heikkinen, R.K., Romo, H., García-Barros, E., Munguira, M.L., Thuiller, W., van Swaay, C.A.M., Schweiger, O., Settele, J., Harpke, A., Wiemers, M., Brotons, L., Luoto, M., 2017. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Diversity and Distributions, 23 (12): 1393–1407. https://doi.org/10.1111/ddi.1263410.1111/ddi.12634 Search in Google Scholar

Trautmann, S., 2018. Climate change impacts on bird species. In Tietze, D. (ed.). Bird species. Fascinating life sciences. Cham: Springer, p. 217–234. https://doi.org/10.1007/978-3-319-91689-7_1210.1007/978-3-319-91689-7_12 Search in Google Scholar

Triviño, M., Thuiller, W., Cabeza, M., Hickler, T., Araújo, M.B., 2011. The contribution of vegetation and landscape configuration for predicting environmental change impacts on Iberian birds. PLoS ONE, 6 (12), e29373. https://doi.org/10.1371/journal.pone.002937310.1371/journal.pone.0029373324526922216263 Search in Google Scholar

van den Wollenberg, A.L., 1977. Redundancy analysis an alternative for canonical correlation analysis. Psychometrika, 42 (2): 207–219. https://doi.org/10.1007/BF0229405010.1007/BF02294050 Search in Google Scholar

Vatka, E., Orell, M., Rytkönen, S., 2011. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Global Change Biology, 17 (9): 3002–3009. https://doi.org/10.1111/j.1365-2486.2011.02430.x10.1111/j.1365-2486.2011.02430.x Search in Google Scholar

Velásquez-Tibatá, J., Salaman, P., Graham, C.H., 2013. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Regional Environmental Change, 13 (2): 235–248. https://doi.org/10.1007/s10113-012-0329-y10.1007/s10113-012-0329-y Search in Google Scholar

Virkkala, R., 2016. Long-term decline of southern boreal forest birds: consequence of habitat alteration or climate change? Biodiversity and Conservation, 25 (1): 151–167. https://doi.org/10.1007/s10531-015-1043-010.1007/s10531-015-1043-0 Search in Google Scholar

Vorovka, V.P., Demchenko, V.O., 2019. Hydroecological problems of the Molochniy Liman in connection with the instability of its communication with the Azov Sea. Visnyk of V. N. Karazin Kharkiv National University. Series “Ecology,” (21): 23–33. https://doi.org/10.26565/1992-4259-2019-21-0210.26565/1992-4259-2019-21-02 Search in Google Scholar

Walther, G.-R., Roques, A., Hulme, P.E., Sykes, M.T., Pyšek, P., Kühn, I., Zobel, M., Bacher, S., Botta-Dukát, Z., Bugmann, H., Czúcz, B., Dauber, J., Hickler, T., Jarosík, V., Kenis, M., Klotz, S., Minchin, D., Moora, M., Nentwig, W., Ott, J., Panov, V.E., Reineking, B., Robinet, C., Semenchenko, V., Solarz, W., Thuiller, W., Vilà, M., Vohland, K., Settele, J., 2009. Alien species in a warmer world: risks and opportunities. Trends in Ecology & Evolution, 24 (12): 686–693. https://doi.org/10.1016/j.tree.2009.06.00810.1016/j.tree.2009.06.00819712994 Search in Google Scholar

Watts, H.E., Jimenez, D., Pacheco, V., Vilgalys, T.P., 2018. Effects of temperature on the timing of breeding and molt transitions in house finches. The Journal of Experimental Biology, 221 (18): jeb185058. https://doi.org/10.1242/jeb.18505810.1242/jeb.18505830104303 Search in Google Scholar

Xu, Z., Hou, Y., Zhang, L., Liu, T., Zhou, G., 2016. Ecosystem responses to warming and watering in typical and desert steppes. Scientific Reports, 6 (1): 34801. https://doi.org/10.1038/srep3480110.1038/srep34801505639827721480 Search in Google Scholar

Zhang, J., Qian, H., Girardello, M., Pellissier, V., Nielsen, S.E., Svenning, J.C., 2018. Trophic interactions among vertebrate guilds and plants shape global patterns in species diversity. Proceedings of the Royal Society B: Biological Sciences, 285 (1883). https://doi.org/10.1098/rspb.2018.094910.1098/rspb.2018.0949608325330051871 Search in Google Scholar

Zhou, Y.-Z., Jia, G.-S., 2016. Precipitation as a control of vegetation phenology for temperate steppes in China. Atmospheric and Oceanic Science Letters, 9 (3): 162–168. https://doi.org/10.1080/16742834.2016.116559410.1080/16742834.2016.1165594 Search in Google Scholar

Zimaroeva, А.A., Zhukov, O.V., Ponomarenko, O.L., 2016. Determining spatial parameters of the ecological niche of Parus major (Passeriformes, Paridae) on the base of remote sensing data. Vestnik Zoologii, 50 (3): 251–258. https://doi.org/10.1515/vzoo-2016-002910.1515/vzoo-2016-0029 Search in Google Scholar

eISSN:
1338-7014
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Plant Science, Zoology, Ecology