Cite

A study of like-charged, bimodal colloidal suspensions was conducted in microgravity aboard the International Space Station as part of NASA's Advanced Colloids Experiments-Heated-2 (ACE-H-2) experiments. Samples comprised of silsesquioxane microparticles (600 nm) and zirconia nanoparticles (5–15 nm) in 1.5 pH nitric acid were mixed and allowed to agglomerate over time while being imaged with NASA's Light Microscopy Module (LMM). The samples contained 1% of microparticles with varying concentrations of nanoparticles in 0.1%, 0.055%, and 0.01% by volume. Digital images were captured periodically by the LMM over 12 days. Image analysis, including cluster size and distribution, was performed in Python using the “Colloidspy” package. The study found that cluster size had increased over time in at least seven of nine samples, but two samples exhibited nonlinear growth rates, while others showed very slow growth with cluster sizes two orders of magnitude greater than the free microparticles. We hypothesize that all samples experienced nonlinear growth, but early transient effects after mixing were missed due to timing limitations in image acquisition. Transport limitations of clusters in these systems may have dominated agglomeration behavior in microgravity, despite the samples being thermodynamically unstable, but more study is required.

eISSN:
2332-7774
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other, Materials Sciences, Physics