Forecasting material quantity using machine learning and times series techniques
Published Online: Jun 08, 2024
Page range: 237 - 248
Received: Apr 12, 2024
DOI: https://doi.org/10.2478/jee-2024-0029
Keywords
© 2024 Hanane Zermane et al., published by Sciendo
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
The current research is dedicated to harnessing cutting-edge technologies within the paradigm of Industry 5.0. The objective is to capitalize on advancements in Machine and Deep Learning techniques. This research endeavors to construct robust predictive models, utilizing historical data, for precise real-time predictions in estimating material quantities within a cement workshop. Machine Learning regressors evaluated based on several metrics, SVR (R-squared 0.9739, MAE 0.0403), Random Forest (R-squared 0.9990, MAE 0.0026), MLP (R-squared 0.9890, MAE 0.0255), Gradient Boosting (R-squared 0.9989, MAE 0.0042). The time series models LSTM and GRU yielded R-squared 0.9978, MAE 0.0100, and R-squared 0.9980, MAE 0.0099, respectively. The ultimate outcomes include improved and efficient production, optimization of production processes, streamlined operations, reduced downtime, mitigation of potential disruptions, and the facilitation of the factory’s evolution towards intelligent manufacturing processes embedded within the framework of Industry 5.0. These achievements underscore the potential impact of leveraging advanced machine learning techniques for enhancing the operational dynamics and overall efficiency of manufacturing facilities