Cite

1. World Health Organisation, Cardiovascular disease (CVDs), 2016. Available from: http://www.who.int/mediacentre/factsheets/fs317/en/#. Search in Google Scholar

2. Roffi M, Patrono C, Collet JP, et al. 2015 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the management of acute coronary syndromes in patients presenting without persistent st segment elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267-315.10.1093/eurheartj/ehv32026320110 Search in Google Scholar

3. Nichols M, Townsend N, Scarborough P, et al. Cardiovascular disease in Europe 2014:epidemiological update. Eur Heart J. 2014;35:2950-2959.10.1093/eurheartj/ehu29925139896 Search in Google Scholar

4. Arbab-Zadeh A, Fuster V. The myth of the “vulnerable plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol. 2015;65:846-855. Search in Google Scholar

5. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13-18.10.1016/j.jacc.2005.10.06516631505 Search in Google Scholar

6. Choy SY, Mintz GS. What have we learned about plaque rupture in acute coronary syndromes? Curr Cardiol Rep. 2010;12:338-343. Search in Google Scholar

7. Andreou I, Antoniadis AP, Shishido K, et al. How do we prevent the vulnerable atherosclerotic plaque from rupturing? Insights from in vivo assessments of plaque, vascular remodeling, and local endothelial shear stress. J Cardiovasc Pharmacol Ther. 2015;20:261-275.10.1177/107424841455500525336461 Search in Google Scholar

8. Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res. 2014;114:1852-1866.10.1161/CIRCRESAHA.114.30272124902970 Search in Google Scholar

9. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63:2889-2934.10.1016/j.jacc.2013.11.00224239923 Search in Google Scholar

10. Tarkin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res. 2016;118:750-769.10.1161/CIRCRESAHA.115.306247475646826892971 Search in Google Scholar

11. Moss AJ, Williams MC, Newby DE, Nicol ED. The updated nice guidelines: cardiac ct as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep. 2017;10:15.10.1007/s12410-017-9412-6536820528446943 Search in Google Scholar

12. Aeshita Dwivedi, Subhi J. Al’Aref, Fay Y. Lin, James K. Min. Evaluation of Atherosclerotic Plaque in Non-invasive Coronary Imaging. Korean Circ J. 2018;48:124-13310.4070/kcj.2017.0392586100329441745 Search in Google Scholar

13. Fernando K, Arzu C and Suhny A. Future Directions in Coronary CT Angiography: CT-Fractional Flow Reserve, Plaque Vulnerability, and Quantitative Plaque Assessment. Korean Circ J. 2020;50:185-202.10.4070/kcj.2019.0315704396231960635 Search in Google Scholar

14. Gössl M, Versari D, Hildebrandt Het al. Vulnerable Plaque: Detection and Management. Med Clin North Am. 2007;91:573-601.10.1016/j.mcna.2007.03.00417640537 Search in Google Scholar

15. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.126210807742 Search in Google Scholar

16. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation. 2003;108:1664-1672.10.1161/01.CIR.0000087480.94275.9714530185 Search in Google Scholar

17. Braunwald E. Progress in the noninvasive detection of highrisk coronary plaques. J Am Coll Cardiol. 2015;66:347-349.10.1016/j.jacc.2015.05.06726205590 Search in Google Scholar

18. Raggi P, Pontone G, Andreini D. Role of new imaging modalities in pursuit of the vulnerable plaque and the vulnerable patient. Int J Cardiol. 2018;250:278-283.10.1016/j.ijcard.2017.10.04629102056 Search in Google Scholar

19. Thomsen C, Abdulla J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and metaanalysis. Eur Heart J Cardiovasc Imaging. 2016;17:120-129.10.1093/ehjci/jev325488289626690951 Search in Google Scholar

20. Motoyama S, Kondo T, Sarai M, et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319-326.10.1016/j.jacc.2007.03.04417659199 Search in Google Scholar

21. Motoyama S, SaraiM, Harigaya H, Anno H, Inoue K, Hara T, et al. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49-57.10.1016/j.jacc.2009.02.06819555840 Search in Google Scholar

22. Motoyama S, Ito H, SaraiM, et al. Plaque characterization by coronary computed tomography angiography and the likelihood of acute coronary events in mid-term follow- up. J Am Coll Cardiol. 2015;66:337-346.10.1016/j.jacc.2015.05.06926205589 Search in Google Scholar

23. Ferencik M, Mayrhofer T, Bittner DO, et al. Use of high-risk coronary atherosclerotic plaque detection for risk stratification of patients with stable chest pain: a secondary analysis of the PROMISE randomized clinical trial. JAMA Cardiol. 2018;3:144-152.10.1001/jamacardio.2017.4973583860129322167 Search in Google Scholar

24. Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291-1300.10.1056/NEJMoa1415516447377325773919 Search in Google Scholar

25. Williams MC, Moss AJ, Dweck M, et al. Coronary artery plaque characteristics associated with adverse outcomes in the SCOT-HEART Study. J Am Coll Cardiol. 2019;73:291-301.10.1016/j.jacc.2018.10.066634289330678759 Search in Google Scholar

26. Newby DE, Adamson PD, Berry C, et al. SCOT-HEART investigators. Coronary CT angiography and 5-year risk of myocardial infarction. N Engl J Med. 2018;379:924-933.10.1056/NEJMoa180597130145934 Search in Google Scholar

27. Williams MC, Kwiecinski J, Doris M, McElhinney P, D’Souza MS, et al. Low-attenuation noncalcified plaque on coronary computed tomography angiography predicts myocardial infarction. Results from the Multicenter SCOT-HEART trial. Circulation. 2020;141:1352-1462. Search in Google Scholar

28. Otsuka K, Fukuda S, Tanaka A, et al. Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. J Am Coll Cardiol Imaging. 2013;6:448-457.10.1016/j.jcmg.2012.09.01623498679 Search in Google Scholar

29. Maurovich-Horvat P, Schlett CL, Alkadhi H, et al. The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging. 2012;5:1243-1252.10.1016/j.jcmg.2012.03.01923236975 Search in Google Scholar

30. Vancraeynest D, Pasquet A, Roelants V, et al. Imaging the vulnerable plaque. J Am Coll Cardiol. 2011;57:1961-1979.10.1016/j.jacc.2011.02.01821565634 Search in Google Scholar

31. Hong MK, Mintz GS, Lee CW, et al. The site of plaque rupture in native coronary arteries: a three-vessel intravascular ultrasound analysis. J Am Coll Cardiol. 2005;46:261-265.10.1016/j.jacc.2005.03.06716022952 Search in Google Scholar

32. Brutkiewicz A, Kruk M, Maurovich-Horvat P, et al. The natural history of napkin-ring sign by coronary computed tomography angiography. Adv Interv Cardiol. 2019;3:314-320.10.5114/aic.2019.87886677719231592255 Search in Google Scholar

33. Al’Aref SJ, Maliakal G, Singh G, et al. Machine learning of clinical variables and coronary artery calcium scoring for the prediction of obstructive coronary artery disease on coronary computed tomography angiography: analysis from the confirm registry. Eur Heart J. 2020;41:359-367.10.1093/eurheartj/ehz565784994431513271 Search in Google Scholar

34. Al-Mallah MH, Sakr S. Artificial intelligence for plaque characterization: a scientific exercise looking for a clinical application. Atherosclerosis. 2019;288:158-159.10.1016/j.atherosclerosis.2019.06.91431280876 Search in Google Scholar

35. Kolossvary M, Karady J, Szilveszter B, et al. Radiomic features are superior to conventional quantitative computed tomographic metrics to identify coronary plaques with napkin-ring sign. Circ Cardiovasc Imaging. 2017;10:e006843.10.1161/CIRCIMAGING.117.006843 Search in Google Scholar

36. Kolossváry M, Park J, Bang JI, et al. Identification of invasive and radionuclide imaging markers of coronary plaque vulnerability using radiomic analysis of coronary computed tomography angiography. Eur Heart J Cardiovasc Imaging. 2019;20:1250-1258.10.1093/ehjci/jez033 Search in Google Scholar

37. Kolossváry M, Kellermayer M, Merkely B, Maurovich-Horvat P. Cardiac computed tomography radiomics: a comprehensive review on radiomic techniques. J Thorac Imaging. 2018;33:26-34.10.1097/RTI.0000000000000268 Search in Google Scholar

38. Oikonomou EK, Williams MC, Kotanidis CP, et al. A novel ct-based radiotranscriptomic signature of perivascular fat improves cardiac risk prediction. Eur Heart J. 2019;40:3529-3543.10.1093/eurheartj/ehz592 Search in Google Scholar

39. Mintz GS, Nissen SE, Anderson WD, et al. American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS): A Report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol. 2001;37:1478-1492.10.1016/S0735-1097(01)01175-5 Search in Google Scholar

40. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG. Coronary Plaque Classification with Intravascular Ultrasound Radiofrequency Data Analysis. Circulation. 2002;106:2200-2206.10.1161/01.CIR.0000035654.18341.5E Search in Google Scholar

41. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions. Arterioscler Thromb Vasc Biol. 2000;20:1262-1275.10.1161/01.ATV.20.5.1262 Search in Google Scholar

42. Stone GW, Maehara A, Lansky AJ, et al. For the PROSPECT Investigators. Association between IVUS of coronary atherosclerosis. N Eng J Med. 2011;364:226-235.10.1056/NEJMoa100235821247313 Search in Google Scholar

43. Calvert PA, Obaid DR, O’Sullivan M, et al. Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. J Am Coll Cardiol Img. 2011;4:894-901.10.1016/j.jcmg.2011.05.00521835382 Search in Google Scholar

44. Schuurman AS, Vroegindewey MM, Kardys I, et al. Prognostic value of intravascular ultrasound in patients with coronary artery disease. J Am Coll Cardiol. 2018;72:2003-2011.10.1016/j.jacc.2018.08.214030336823 Search in Google Scholar

45. Schuurman AS, Vroegindewey M, Kardys I, et al. Near-infrared spectroscopy-derived lipid core burden index predicts adverse cardiovascular outcome in patients with coronary artery disease during long-term follow-up. Eur Heart J. 2018;39:295-302.10.1093/eurheartj/ehx247 Search in Google Scholar

46. Zhao Z, Witzenbichler B, Mintz GS, et al. Dynamic nature of nonculprit coronary artery lesion morphology in STEMI: a serial IVUS analysis from the HORIZONS-AMI trial. J Am Coll Cardiol Img. 2013;6:86-95.10.1016/j.jcmg.2012.08.010 Search in Google Scholar

47. Kubo T, Maehara A, Mintz GS, et al. The dynamic nature of coronary artery lesion morphology assessed by serial virtual histology intravascular ultrasound tissue characterization. J Am Coll Cardiol. 2010;55:1590-1597.10.1016/j.jacc.2009.07.078 Search in Google Scholar

48. Gregg W, Gary S, Renu V. Vulnerable Plaques, Vulnerable Patients, and Intravascular Imaging. J Am Coll Cardiol. 2018;72:2022-2026.10.1016/j.jacc.2018.09.010 Search in Google Scholar

49. Maehara A, Mintz GS, Stone GW. OCT versus IVUS: accuracy versus clinical utility. JACC Cardiovasc Imag. 2013;6:1105-1107.10.1016/j.jcmg.2013.05.016 Search in Google Scholar

50. Tearney GJ, Regar E, Akasaka T, et al. Consensus standards for acquisition, measurement, and reporting of intravascular optical coherence tomography studies: a report from the International Working Group for Intravascular Optical Coherence Tomography Standardization and Validation. J Am Coll Cardiol. 2012;59:1058-1072.10.1016/j.jacc.2011.09.079 Search in Google Scholar

51. Kini AS, Vengrenyuk Y, Yoshimura T, et al. Fibrous cap thickness by optical coherence tomography in vivo. J Am Coll Cardiol. 2017;69:644-657.10.1016/j.jacc.2016.10.028 Search in Google Scholar

52. Kume T, Akasaka T, Kawamoto T, et al. Measurement of the thickness of the fbrous cap by optical coherence tomography. Am Heart J. 2006;152:e1-755.e4.10.1016/j.ahj.2006.06.030 Search in Google Scholar

53. Toutouzas K, Karanasos A, Tousoulis D. Optical coherence tomography for the detection of the vulnerable plaque. Eur Cardiol Rev. 2016;11:90.10.15420/ecr.2016:29:2 Search in Google Scholar

54. Hattori K, Ozaki Y, Ismail TF, et al. Impact of statin therapy on plaque characteristics as assessed by serial OCT grayscale and integrated backscatter-IVUS. J Am Coll Cardiol Img. 2012;5:169-177.10.1016/j.jcmg.2011.11.01222340823 Search in Google Scholar

55. Francesco F, Filippo C, Tomoyo S, et al. Healed Culprit Plaques in Patients With Acute Coronary Syndromes. J Am Coll Cardiol. 2019;73:2253-2263.10.1016/j.jacc.2018.10.09331072568 Search in Google Scholar

56. Otsuka F, Joner M, Prati F, Virmani R, Narula J. Clinical classification of plaque morphology in coronary disease. Nat Rev Cardiol. 2014;11:379-389.10.1038/nrcardio.2014.6224776706 Search in Google Scholar

57. Taglieri N, Ghetti G, Bruno AG, et. al. Optical coherence tomography assessment of macrophage accumulation in non-ST-segment elevation acute coronary syndromes. J Cardiovasc Med. 2020;21:860-865.10.2459/JCM.000000000000101533017123 Search in Google Scholar

58. Taglieri N, Nanni C, Ghetti G, et al. Relation between thoracic aortic inflammation and features of plaque vulnerability in the coronary tree in patients with non-ST-segment elevation acute coronary syndrome undergoing percutaneous coronary intervention: an FDG-positron emission tomography and optical coherence tomography study. Eur J Nucl Med Mol Imaging. 2017;44:1878-1887.10.1007/s00259-017-3747-828584972 Search in Google Scholar

59. Räber L, Koskina KC, Yamaji K, et al. Changes in coronary plaque composition in patients with acute myocardial infarction treated with highintensity statin therapy (IBIS-4): a serial optical Coherence Tomography Study. JACC Cardiovascular Imaging. 2019;12:1518-1528.10.1016/j.jcmg.2018.08.02430553686 Search in Google Scholar

60. Benedek T, Mester A, Benedek A, Rat N, Opincariu D, Chițu M. Assessment of Coronary Plaque Vulnerability in Acute Coronary Syndromes using Optical Coherence Tomography and Intravascular Ultrasound. A Systematic Review. Journal of Cardiovascular Emergencies. 2016;2:173-184.10.1515/jce-2016-0028 Search in Google Scholar

eISSN:
2501-8132
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Medicine, Clinical Medicine, other, Internal Medicine, Surgery, Emergency Medicine and Intensive-Care Medicine