Open Access

Analysing Effects on Ground Water Levels Due to Conversion of Rural to Urban Landscapes


Cite

Greater NOIDA evolved from 1991 with 101 villages to 2020 with 293 villages. This is an ideal case of rural to urban transformation in the immediate past. This transformation led to a decrease in recharging natural surfaces and an increase in impermeable surfaces. Along with the reduction in recharge areas, an increase in population has necessitated more and more extraction of groundwater resulting in an imbalance of water extraction and recharge. The result is depletion of groundwater levels in this area. The area is part of the wide Indo-Gangetic alluvium with sand, silt and clay layers resting on quartzite’s of Delhi Super Group. Geomorphological map prepared using digital elevation models of the area shows older and younger alluvial plains and active flood plains of the river Hindan. Time series analysis of key land use land cover classes shows that recharge areas were reduced from 77 % to 30 % from 2005 to 2019 and impervious surfaces have increased from 19 % to 65 % for the same period. Aquifers of the area are both phreatic and semi-confined. The aquifer parameters estimated through step drawdown test and long duration aquifer performance test indicates that the average coefficient of transmissivity of the area is 1752 m2/day and the average coefficient of storage is 4.84 x 10-4. Discharge of the wells shows a yield of 8 to 16 lps for a drawdown of 3 to 6 m. An attempt has been made to know the behaviour of groundwater levels during the same period as that of land use land cover. The results indicate a 74 % depletion in groundwater levels with an average annual depletion of 21 %. An interrelationship between urban growth and groundwater levels has been established in this study. This analysis indicates that as agriculture declined water levels also depleted and have a positive correlation of 0.852. On the contrary, as the built-up increased water level has depleted hence have a negative relationship with a correlation coefficient of -0.851. To make it a sustainable resource, these overexploited aquifers need careful participatory management by communities, Scientists, and policymakers.

eISSN:
1805-4196
Language:
English
Publication timeframe:
3 times per year
Journal Subjects:
Geosciences, other, Life Sciences, Ecology