Cite

1. Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. (n.d.) Available at https://www.astm.org/Standards/D5528 Search in Google Scholar

2. 8801 (100kN) Fatigue Testing Systems. (n.d.). Available at https://www.instron.us/products/testing-systems/dynamic-and-fatigue-systems/servohydraulic-fatigue/8801-floor-model Search in Google Scholar

3. Lingelli, A. F. (Ed.) (2009). Fatigue Crack Growth. Mechanics, Behaviour and Prediction. New York: Nova Science Publishers Ins. Search in Google Scholar

4. Multi-Channel Systems. (n.d.). Available at https://www.vallen.de/products/multi-channel-systems/ Search in Google Scholar

5. Hsu-Nielsen Source. (n.d.). Available at https://www.ndt.net/article/az/ae/hsunielsensource.htm Search in Google Scholar

6. AMSY-5 System Description. (n.d.). Available at https://www.vallen.de/zdownload/pdf/y5sd0911.pdf Search in Google Scholar

7. Urbaha, M., Turko, V., Agafonovs, I., & Sorokins, A. (2020). Experimental Evaluation of Static and Fatigue Strength of Aluminium-Based Structural Metallic Alloys. Engineering for Rural Development, 19, 487–493.10.22616/ERDev.2020.19.TF111 Search in Google Scholar

8. P.E.Mix Introduction to Non-destructive Testing, training guide (2nd ed.). (2005). New Jersey: John Wiley & Sons, Inc. Search in Google Scholar

9. Urbaha, M., Carjova, K., Nagaraj, P., & Turko, V. (2018). Requirements for helicopter’s planer construction fatigue testing. In Transport Means – Proceedings of the International Conference, (pp. 1268–1270), 3–5 October 2018, Trakai, Lithuania. Search in Google Scholar

10. Urbahs, A., Banovs, M., Turko, V., Urbaha, M., Nedelko, D., & Lebedevs, I. (2019). Research into the features of service damage in the composite material of helicopter rotor blades. In Transport Means – Proceedings of the International Conference, (pp. 466–469), 2–4 October 2019, Kaunas, Lithuania. Search in Google Scholar

11. Гузь А.Н., Хорошун Л.П., Ванин Г.А., Бабич И.Ю., Каминский A.A., Шульга H.A., Маслов Б.П., & Скиченко A.B. (1982). Механика композитных материалов и элементов конструкций. Киев: Наук. думка. Search in Google Scholar

12. Finlayson, R.D., Friesel, M., Carlos, M., Cole, P., & Lenein, J.C. (2001). Health monitoring of aerospace structures with acoustic emission and acousto-ultrasonics. In 15th World Conference on NDT, 15–21 October, 2000, Rome, Italy. INSIGHT, 43 (3). Search in Google Scholar

13. Фейгенбаум Ю.М., Дубинский С.В., Божевалов Д.Г., Соколов Ю.С., Метелкин Е.С., Миколайчук Ю.А., & Шапкин В.С. (2018). Обеспечение прочности композиционных авиационных конструк- ций с учетом случайных эксплуатацион-ных ударных воздействий. M.: Техносфера. Search in Google Scholar

14. Prostaks, J., & Urbaha, M. (2019). Evaluating Accuracy of Fault Localization when Monitoring Condition of Large Structures by Acoustic Method. Engineering for Rural Development, 18, 1280–1286.10.22616/ERDev2019.18.N143 Search in Google Scholar

15. Nedelko, D., Urbahs, A., Turko, V., Urbaha, M., Carjova, K., & Nagaraj, P. (2019). Assessment of the Limits of Signs of Health and Usage Monitoring System for Helicopter Transmission. Procedia Computer Science, 149, 252–257.10.1016/j.procs.2019.01.131 Search in Google Scholar

16. Turko, V. (2015). Principle of Local Zones Applied to Fatigue Prone Large-scale Designs. Lambert Academic Publishing. DOI: 10.22616/ERDev2020.19.TF111 Search in Google Scholar

eISSN:
2255-8896
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Physics, Technical and Applied Physics