Open Access

Recovery of Fine Coal Grains from Post-Mining Wastes with Use of Autogenous Suspending Bed Technology

Management Systems in Production Engineering's Cover Image
Management Systems in Production Engineering
Special Issue: IMTech2020-INNOVATIVE MINING TECHNOLOGIES. Editors: Dariusz Prostański, Bartosz Polnik

Cite

[1] Bahrami A. Y. Ghorbani Y. Mirmohammadi M. Sheykhi B. Kazemi F. “The beneficiation of tailing of coal preparation plant by heavy-medium cyclone”. International Journal of Coal Science & Technology. Volume 5. pp. 374-384. 2018.10.1007/s40789-018-0221-6 Search in Google Scholar

[2] Drummond R. Nicol S.. Swanson A. “Teetered bed separators – the Australian experience” The Journal of The South African Institute of Mining and Metallurgy. pp. 385-391. 2002. Search in Google Scholar

[3] Fu D. “Three-Product Teetered Bed Separator - A New Design for Coal Slime Separation”. XVIII International Coal Preparation Congress pp. 377-382 2016.10.1007/978-3-319-40943-6_56 Search in Google Scholar

[4] Fu D. “Why H-TBS? Teetered Bed Separator. or Hydrosizer”. http://www.hotminingepc.com. [March 26. 2020]. Search in Google Scholar

[5] P. Bozek, E. Pivarciova. Flexible manufacturing system with automatic control of product quality. In Strojarstvo. Vol. 55, No. 3, pp. 211-221, 2013. Search in Google Scholar

[6] Gülcan E. Bahrami A. “Investigating the high ash lignite processing with teetered bed separator”. International Journal of Coal Preparation and Utilization. 2019.10.1080/19392699.2019.1583218 Search in Google Scholar

[7] Honaker R.Q. “Hindered bed classifiers for fine coal cleaning”. Proceedings of 13th International Coal Preparation Conference. pp. 59-70. Lexington. KY. 1996. Search in Google Scholar

[8] Kohmuench J.N. Mankosa M.J. Honaker R.Q. Bratton R.C. “Applications of the CrossFlow teeter-bed separator in the US coal industry”. Minerals and Metallurgical Processing 23(4). 2006.10.1007/BF03403346 Search in Google Scholar

[9] Kowol D.. Matusiak P. „Możliwości zastosowania klasyfikatora pulsacyjnego do rewitalizacji składowisk odpadów kopalnianych”. Innowacyjne rozwiązania rewitalizacji terenów zdegradowanych. t. 8. Praca zbiorowa pod redakcją naukową Jana Skowronka. Instytut Ekologii Terenów Uprzemysłowionych. Centrum Badań i Dozoru Górnictwa Podziemnego sp. z o.o.. pp. 163-172. Katowice 2016. Search in Google Scholar

[10] Kowol D.. Matusiak P. “Technology of fine coal grains recovery from the mining waste deposits”. Mineral Engineering Conferences. IOP Conf. Series: Materials Science and Engineering 427 012025. 2018.10.1088/1757-899X/427/1/012025 Search in Google Scholar

[11] Kowol D. i inni „Opracowanie koncepcji odzysku drobnych ziaren węglowych z wykorzystaniem technologii autogenicznego łoża zawiesinowego”. ITG KOMAG. 2018. (unpublished). Search in Google Scholar

[12] Kowol D. Matusiak P. “Use of a jig beneficiation process for obtaining mineral raw materials”. Materiały na konferencję: IMTech 2019. Innovative Mining Technologies. Scientific and Technical Conference. Szczyrk. Poland. 25-27 March 2019 pp. 1-11. IOP Conference Series: Materials Science and Engineering 2019 vol. 545.10.1088/1757-899X/545/1/012006 Search in Google Scholar

[13] Kucharzyk P. “Polsko Węgierska Spółka Akcyjna “Haldex” -technologia zakładów przeróbki mechanicznej odpadów pogórniczych”. Inżynieria Mineralna. R. 5. nr 2. 2004. Search in Google Scholar

[14] Littler A. “Automatic hindered-settling classifier for hydraulic sizing and mineral beneficiation”. Mineral Processing and Extractive Metallurgy 95. pp. 133-138. 1986. Search in Google Scholar

[15] Matusiak P. Kowol D. „Application of the jig beneficiation operation for minerals recovery from mining waste deposits” („Zastosowanie osadzarkowego procesu wzbogacania do rekultywacji składowisk odpadów górniczych”). Min. Sci. Miner. Aggreg. nr 1 pp. 115-125. 2016. Search in Google Scholar

[16] Matusiak P. Kowol D. „Technologia odzysku koncentratu węglowego z odpadów pogórniczych poprzez wdrożenia urządzeń typu KOMAG”. Maszyny Górnicze nr 2 pp. 42-52. 2017 Search in Google Scholar

[17] Matusiak P. Kowol D. „Use of intelligent solutions in production of mineral aggregates” („Zastosowanie inteligentnych rozwiązań w procesach produkcji kruszyw mineral-nych”). Kruszywa mineralne. t. 2. Wydział Geoinżynierii, Górnictwa i Geologii Politechniki Wrocławskiej. pp. 133-142. 2018. Search in Google Scholar

[18] Mehrotra A.K. Singhal R.K. “Environmental Issues and Waste Management in Energy and Mineral Production: Proceedings of the Sixth International Symposium”. Calgary. Alberta. Canada. 30 May-2 June 2000. Search in Google Scholar

[19] Ozcan O. Celik I. “Beneficiation Routes for Upgrading Iron Ore Tailings with Teetered Bed Separator Separation”. Science and Technology 51(17). 2016.10.1080/01496395.2016.1218514 Search in Google Scholar

[20] Ozcan O. Ergun L. “Performance of Teetered Bed Separator for Non-Coal Applications”. Separation Science and Technology. Volume 52. 2017.10.1080/01496395.2017.1288745 Search in Google Scholar

[21] Piecuch T. Dąbrowski J. „Procesy i urządzenia w przeróbce odpadów przemysłowych”. Politechnika Koszalińska. 2016. Search in Google Scholar

[22] Różański Z. Suponik T. Matusiak P. Kowol D. Szpyrka J. Mazurek M. Wrona P. „Coal recovery from a coal waste dump”. E3S Web of Conferences 8. 01052 92016). MEC 2016.10.1051/e3sconf/20160801052 Search in Google Scholar

[23] Sokół W. Tabor A. „Problemy zagospodarowania odpadów powęglowych z górnictwa węgla kamiennego w Polsce”. Przegląd Geologiczny. vol. 44. nr 7. pp. 710-715. 1996. Search in Google Scholar

[24] Tripathy S.K.. Mallick M.. Singh V.. Yanamandra R.M. “Preliminary studies on teeter bed separator for separation of manganese fines”. Powder Technology 239. pp. 284-289. 2013.10.1016/j.powtec.2013.02.015 Search in Google Scholar

[25] Xing Y. Gui X. Wang Y. Cao Y. Zhang Y. “Optimization of a Teetered-Bed Separator Using Pulsed Water”. International Journal of Coal Preparation and Utilization . Volume 36. 2016.10.1080/19392699.2015.1061515 Search in Google Scholar

[26] Zhang L.. Liu W. Zhang Y. “Calculation of teeter bed height of teetered bed separator based on jet theory”. Powder Technology. Volume 295. pp. 225-233. 2016.10.1016/j.powtec.2016.03.046 Search in Google Scholar

[27] Zhang W. “TBS teeter bed and its application of coarse slime separation”. Coal Processing and Utilization 3:36-29. 2009. Search in Google Scholar

[28] Plesingerova, B., Vadasz, P., Kamensky, R., et al.. Spent Magnesia-Carbon Refractory Bricks from Steel Production: Potentiality of MgO-Clinker Recovery. Acta Montanistica Slovaca, Volume 23, Issue 1, 2018, pp. 39-45. Search in Google Scholar

[29] M. Baranov, P. Bozek, V. Prajova, T. Ivanova, D. Novokshonov, A. Korshunov. Constructing and calculating of multistage sucker rod string according to reduced stress. Acta Montanistica Slovaca. Vol. 22, no. 2, pp. 107-115, 2017. Search in Google Scholar