Cite

Bannerman, D. D. (2009). Pathogen-dependent induction of cytokines and other soluble inflammatory mediators during intra-mammary infection of dairy cows. J. Anim. Sci., 87, 10–25. Search in Google Scholar

Bochniarz, M., Zdzisińska, B., Wawron, W., Szczubiał, M., Dąbrowski, R. (2017). Milk and serum IL-4, IL-6, IL-10, and amyloid A concentrations in cows with subclinical mastitis caused by coagulase-negative staphylococci. J. Dairy Sci., 100 (12), 9674–9680. Search in Google Scholar

Boulanger, D., Bureau, F., Melotte, D., Mainil, J., Lekeaux, P. (2003). Increased nuclear factor kappaB activity in milk cells of mastitis-affected cows. J. Dairy Sci., 86 (4), 1259–1267. Search in Google Scholar

Braem, G., De Vliegher, S., Verbist, B., Piessens, V., Van Coillie, E., De Vuyst, L., Leroy, F. (2013). Unraveling the microbiota of teat apices of clinically healthy lactating dairy cows, with special emphasis on coagulase-negative staphylococci. J. Dairy Sci., 96 (3), 1499–1510. Search in Google Scholar

Chen, K., Kolls, J. K. (2017). Interluekin-17A (IL17A). Gene, 614, 8–14. Search in Google Scholar

Commins, S. P., Borish, L., Steinke, J. W. (2010). Immunologic messenger molecules: Cytokines, interferons, and chemokines. J. Allergy Clin. Immunol., 125, 53–72. Search in Google Scholar

De Silva, S. A. S. D., Kanugala, K. A. N. P., Weerakkody, N. S. (2016). Microbiological quality of raw milk and effect on quality by implementing good management practices. Procedia Food Sci., 6, 92–96. Search in Google Scholar

Delavenne, E., Mounier, J., Déniel, F., Barbier, G., Le Blay, G. (2012). Biodiversity of antifungal lactic acid bacteria isolated from raw milk samples from cow, ewe and goat over one-year period. Int. J. Food Microbiol., 155 (3), 185–190. Search in Google Scholar

Doyle, C. J., Gleeson, D., O'Toole, P. W., Cotter, P. D. (2016). Impacts of seasonal housing and teat preparation on raw milk microbiota: A high-throughput sequencing study. Appl. Environ. Microbiol., 83 (2), e02694–16. Search in Google Scholar

Dworecka-Kaszak, B., Krutkiewicz, A., Szopa, D., Kleczkowski, M., Biegańska, M. (2012). High prevalence of Candida yeast in milk samples from cows suffering from mastitis in Poland. Sci. World J., 196347. Search in Google Scholar

Fonseca, I., Silva, P. V., Lange, C. C., Guimarćes, M. F., Del, M. M., Weller, C. A., Sousa, K. R. S., Lopes, P. S., Guimarćes, J. D., Guimarćes, S. E. F. (2009). Expression profile of genes associated with mastitis in dairy cattle. Genet. Mol. Biol., 32, 776–781. Search in Google Scholar

Gopal, N., Hill, C., Ross, P. R., Beresford, T. P., Fenelon, M. A., Cotter, P. D. (2015). The prevalence and control of bacillus and related spore-forming bacteria in the dairy industry. Front. Microbiol., 6, 1418. Search in Google Scholar

Gulbe, G., Pilmane, M., Saulīte, V., Doniņa, S., Jermolajevs, J., Peškova, L., Valdovska, A. (2020). Cells and cytokines in milk of subclinically infected bovine mammary glands after the use of immunomodulatory composition GLP 810. Mediators Inflamm., 8238029. Search in Google Scholar

Gurao, A., Kashyap, S. K., Singh, R. (2017). β-defensins: An innate defense for bovine mastitis. Vet. World, 10 (8), 990–998. Search in Google Scholar

Hisaeda, K., Hagiwara, K., Eguchi, J., Yamanaka, H., Kirisawa, R., Iwai, H. (2001). Interferon-gamma and tumor necrosis factor-alpha levels in sera and whey of cattle with naturally occurring coliform mastitis. J. Vet. Med. Sci., 63 (9), 1009–1011. Search in Google Scholar

Ivashkiv, L. B. (2018). IFNć: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat. Rev. Immunol., 18 (9), 545–558. Search in Google Scholar

Jakiel, M., Jesiołkiewicz, E., Ptak, E. (2011). Zależność między zawartością komórek somatycznych a cechami wydajności mlecznej w mleku krów rasy PHF odmiany czarno-białej. Rocz. Nauk. Pol. Tow. Zootech., 7, 9–17. Search in Google Scholar

Kawecka-Grochocka, E., Zalewska, M., Rzewuska, M., Kościuczuk, E., Ząbek, T., Sakowski, T., Marczak, S., Bagnicka, E. (2021). Expression of cytokines in dairy cattle mammary gland parenchyma during chronic staphylococcal infection. Vet. Res., 52, 132. Search in Google Scholar

Keane, O. M. (2019). Symposium review: Intramammary infections. Major pathogens and train-associated complexity. J. Dairy Sci., 102, 4713–4726. Search in Google Scholar

Khan, M. Z., Khan, A., Xiao, J., Ma, J., Ma, Y., Chen, T., Shao, D., Cao, Z. (2020). Overview of research development on the role of NF-źB signaling in mastitis. Animals (Basel), 10 (9), 1625. Search in Google Scholar

Kościuczuk, E. M., Lisowski, P., Jarczak, J., Krzyżewski, J., Zwierzchowski, L., Bagnicka, E. (2014). Expression patterns of β-defensin and cathelicidin genes in parenchyma of bovine mammary gland infected with coagulase-positive or coagulase-negative Staphylococci. BMC Vet. Res., 10, 246. Search in Google Scholar

Luzina, I. G., Keegan, A. D., Heller, N. M., Rook, G. A. W., Shea-Donohue, T., Atamas, S. P. (2012). Regulation of inflammation by interleukin-4: A review of “alternatives”. J. Leukocyte Biol., 92 (4), 753–764. Search in Google Scholar

Meade, K. G., O’Farrelly, C. (2019). β-Defensins: Farming the microbiome for homeostasis and health. Front. Immunol., 9, 3072. Search in Google Scholar

Meng, L., Liu, H., Dong, L., Zheng, N., Xing, M., Zhang, Y., Zhao, S., Wang, J. (2018). Identification and proteolytic activity quantification of Pseudomonas spp. isolated from different raw milks at storage temperatures. J. Dairy Sci. 101 (4), 2897–2905. Search in Google Scholar

Murphy, B. P., O'Mahony, E., Buckley, J. F., O'Brien, S., Fanning, S. (2010). Characterization of Staphylococcus aureus isolated from dairy animals in Ireland. Zoonoses Publ. Health, 57 (4), 249–257. Search in Google Scholar

Oikonomou, G., Addis, M. F., Chassard, C., Nader-Macias, M. E. F., Grant, I., Delbes, C., Bogni, C. I., Loir, Y. L., Even, S. (2020). Milk microbiota: What are we exactly talking about? Front. Microbiol., 11, 60. Search in Google Scholar

Panahipour, L., Stähli, A., Haiden, N., Gruber, R. (2018). TGF-β activity in cow milk and fermented milk products: An in vitro bio-assay with oral fibroblasts. Arch. Oral Biol., 95, 15–21. Search in Google Scholar

Paudyal, S., Melendez P., Manriquez, D., Velasquez-Munoz, A., Pena, G., Roman-Muniz, I. N., Pinedo, P. J. (2019). Use of milk electrical conductivity for the differentiation of mastitis causing pathogens in Holstein cows. Animal, 14 (3), 588–596. Search in Google Scholar

Porcellato, D., Meisal, R., Bombelli, A., Narvhus, J. A. (2020). A core microbiota dominates a rich microbial diversity in the bovine udder and may indicate presence of dysbiosis. Sci. Rep., 10 (1), 21608. Search in Google Scholar

Rahimi, E., Ameri, M., Karim, G., Doosti, A. (2011). Prevalence of Coxiella burnetii in bulk milk samples from dairy bovine, ovine, caprine, and camel herds in Iran as determined by polymerase chain reaction. Foodborne Pathog. Dis., 8 (2), 307–310. Search in Google Scholar

Rainard, P., Cunha, P., Martins, R. P., Gilbert, F. B., Germon, P., Foucras, G. (2020). Type 3 Immunity: A Perspective for the defense of the mammary gland against infections. Vet. Res., 51, 129. Search in Google Scholar

Ridhowi, A., Chang, H-L., Liang, C-L., Suyadi, Wu, M-C. (2018). The Interleukin-8 gene polymorphism and its association with milk production traits in Holstein cows. Indian J. Anim. Res., 52, 1395–1399. Search in Google Scholar

Riffenburgh, R. H., Gillen, D. L. (2020). Chapter 12, Equivalence testing. In: Statistics in Medicine. 4th ed. Elsevier Inc., California (USA), pp. 295–309. Search in Google Scholar

Riffenburgh, R. H., Gillen, D. L. (2020). Chapter 15, Linear regression and correlation. In: Statistics in Medicine. 4th ed. Elsevier Inc., California (USA), pp. 375–390. Search in Google Scholar

Riollet, C., Rainard, P., Poutrel, B. (2000) Cells and cytokines in inflammatory secretions of bovine mammary gland. Adv. Exp. Med. Biol. 480, 247–258. Search in Google Scholar

Roussel, P., Cunha, P., Porcherie, A., Petzl, W., Gilbert, F. B., Riollet, C., Zerbe, H., Rainard, P., Germon, P. (2015). Investigating the contribution of IL-17A and IL-17F to the host response during Escherichia Coli mastitis. Vet. Res., 46, 56. Search in Google Scholar

Ruegg, L. P. (2022). The bovine milk microbiome: An evolving science. Domest. Anim. Endocrinol., 79, 106708. Search in Google Scholar

Saraiva, M., O'Garra, A. (2010). The regulation of IL-10 production by immune cells. Nat. Rev. Immunol., 10 (3), 170–181. Search in Google Scholar

Seker, E. (2010). Identification of Candida species isolated from bovine mastitic milk and their in vitro hemolytic activity in Western Turkey. Mycopathologia, 169 (4), 303–308. Search in Google Scholar

Sørensen, L. P., Bjerring, M., Løvendahl, P. (2016). Monitoring individual cow udder health in automated milking systems using online somatic cell counts. J. Dairy Sci., 99 (1), 608–620. Search in Google Scholar

Steinberg, R. S., Silva E. Silva, L. C., de Souza, M. R., Reis, R. B., da Silva, P. C. L., Lacorte, G. A., Nicoli, J. R., Neumann, E., Nunes, A. C. (2022). Changes in bovine milk bacterial microbiome from healthy and subclinical mastitis affected animals of the Girolando, Gyr, Guzera, and Holstein breeds. Int. Microbiol., 25 (4), 803–815. Search in Google Scholar

Taponen, S., McGuinness, D., Hiitiö, H., Simojoki, H., Zadoks, R., Pyörälä, S. (2019). Bovine milk microbiome: A more complex issue than expected. Vet. Res., 50, 44. Search in Google Scholar

Tassi, R., McNeilly, T. N., Fitzpatrick, J. L., Fontaine, M. C., Reddick, D., Ramage, C., Lutton, M., Schukken, Y. H., Zadoks, R. N. (2013). Strain-specific pathogenicity of putative host-adapted and nonadapted strains of Streptococcus Uberis in dairy cattle. J. Dairy Sci. 96, 5129–5145. Search in Google Scholar

Tzavlaki, K., Moustakas, A. (2020). TGF-β Signaling. Biomolecules, 10 (3), 487. Search in Google Scholar

Verdier-Metz, I., Gagne, G., Bornes, S., Monsallier, F., Veisseire, P., Delbčs-Paus, C., Montel, M. C. (2012). Cow teat skin, a potential source of diverse microbial populations for cheese production. Appl. Environ. Microbiol., 78 (2), 326–333. Search in Google Scholar

Zaragoza, S. C., Cervantes Olivares, R. A., Ducoing Watty, A. E., de la Peńa Moctezuma, A., Villa Tanaca, L. (2011). Yeasts isolation from bovine mammary glands under different mastitis status in the Mexican High Plateu. Revista Iberoamericana de Micologķa, 28 (2), 79–82. Search in Google Scholar

Zecconi, A., Piccinini, R., Fiorina, S., Cabrini, L., Daprà, V., Amadori, M. (2009). Evaluation of interleukin-2 treatment for prevention of intramammary infections in cows after calving. Comp. Immunol. Microbiol. Infect. Dis., 32, 439–451. Search in Google Scholar

Zinicola, M., Bicalho, M. L. S., Santin, T., Marques, E. C., Bisinotto, R. S., Bicalho, R. C. (2019). Effects of recombinant bovine interleukin-8 (rbIL-8) treatment on health, metabolism, and lactation performance in Holstein cattle II: Postpartum uterine health, ketosis, and milk production. J. Dairy Sci., 102, 10316–10328. Search in Google Scholar

eISSN:
2255-890X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics