Cite

Acosta, K., Xu, J., Gilbert, S., Denison, E., Brinkman, T., Lebeis, S., Lam, E. (2020). Duckweed hosts a taxonomically similar bacterial assemblage as the terrestrial leaf microbiome. PLoS One, 15 (2), e0228560. https://doi.org/10.1371/journal.pone.0228560. Search in Google Scholar

Aliferis, K. A., Materzok, S., Paziotou, G. N., Chrysayi-Tokousbalides, M. (2009). Lemna minor L. as a model organism for ecotoxicological studies performing 1H NMR fingerprinting. Chemosphere, 76 (7), 967–973. https://doi.org/10.1016/j.chemosphere.2009.04.025. Search in Google Scholar

Ater, M., Ali, N. A., Kasmi, H. (2006). Tolerance and accumulation of copper and chromium in two duckweed species: Lemna minor L. and Lemna gibba L. J. Water Sci., 19 (1), 57–67. https://doi.org/10.7202/012597ar. Search in Google Scholar

Brain, R. A., Solomon, K. R. (2007). A protocol for conducting 7-day daily renewal tests with Lemna gibba. Nat. Protoc., 2, 979–987. https://doi.org/10.1038/nprot.2007.146. Search in Google Scholar

Bourge, M., Brown, S. C., Siljak-Yakovlev, S. (2018). Flow cytometry as tool in plant sciences, with emphasis on genome size and ploidy level assessment. Gen. Appl., 2 (2), 1–12. https://doi.org/10.31383/ga.vol2iss2pp1-12. Search in Google Scholar

Cao, X. H., Vu, G. T. . (2020). Cytogenetics, epigenetics and karyotype evolution of duckweeds. In: Cao, X. H., Fourounjian, P., Wang, W. (eds.) The Duckweed Genomes. Compendium of Plant Genomes. Springer, Cham., pp. 47–57. Search in Google Scholar

Cole, C. T., Voskuil, M. (1996). Population genetic structure in duckweed (Lemna minor, Lemnaceae). Can. J. Bot., 74 (2), 222–230. https://doi.org/10.1139/b96-026. Search in Google Scholar

Daud, M. K., Ali, S., Abbas, Z., Zaheer, I. E., Riaz, M. A., Malik, A., Hussain, A., Rizwan, M., Ziaur-Rehman, M., Zhu, S. J. (2018). Potential of duckweed (Lemna minor) for the phytoremediation of landfill leachate. J. Chem., 2018, 3951540. https://doi.org/10.1155/2018/3951540. Search in Google Scholar

Doležel, J., Greilhuber, J., Suda, J. (2007). Flow cytometry with plants: An overview. In: Doležel, J., Greilhuber, J., Suda J. (eds.) Flow Cytometry with Plant Cells: Analysis of Genes, Chromosomes and Genomes. Wiley-VCH Verlag GmbH&Co. KGaA, pp. 41–65. Search in Google Scholar

Dufresne, F., Stift, M., Vergilino, R., Mable, B. K. (2014). Recent progress and challenges in population genetics of polyploid organisms: An overview of current state-of-the-art molecular and statistical tools. Mol. Ecol., 23 (1), 40–69. https://doi.org/10.1111/mec.12581. Search in Google Scholar

Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res., 32, 1792–1797. https://doi.org/10.1093/nar/gkh340. Search in Google Scholar

Galbraith, D.W. (2010). Flow cytometry and fluorescence-activated cell sorting in plants: The past, present, and future. Biomédica, 30, 65–70. https://doi.org/10.7705/biomedica.v30i0.824. Search in Google Scholar

Glick, B. R. (2012). Plant growth-promoting bacteria: Mechanisms and applications. Scientifica, 2012, 963401. https://doi.org/10.6064/2012/963401. Search in Google Scholar

Ishizawa, H., Kuroda, M., Morikawa, M., Ike, M. (2017). Evaluation of environmental bacterial communities as a factor affecting the growth of duck-weed Lemna minor. Biotechnol. Biofuels, 10, 62. https://doi.org/10.1186/s13068-017-0746-8. Search in Google Scholar

Kamyab, H., Chelliapan, S., Din, M. F. M., Shahbazian-Yassar, R., Rezania, S., Khademi, T., Kumar, A., Azimi, M. (2017). Evaluation of Lemna minor and Chlamydomonas to treat palm oil mill effluent and fertilizer production. J. Water Process Eng., 17, 229–236. https://doi.org/10.1016/j.jwpe.2017.04.007. Search in Google Scholar

Kastratović, V., Jaćimović, Ž., Durović, D., Bigović, M., Krivokapić, S. (2015). Lemna minor L. as bioindicator of heavy metal pollution in Skadar lake (Montenegro). Kragujevac J. Sci., 37, 123–134. https://doi.org/10.5937/KgJSci1537123K. Search in Google Scholar

Kostopoulou, S., Ntatsi, G., Arapis, G., Aliferis, K. A. (2020). Assessment of the effects of metribuzin, glyphosate, and their mixtures on the metabolism of the model plant Lemna minor L. applying metabolomics. Chemosphere, 239, 124582. https://doi.org/10.1016/j.chemosphere.2019.124582. Search in Google Scholar

Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol., 35 (6), 1547–1549. https://doi.org/10.1093/molbev/msy096. Search in Google Scholar

Murashige, T., Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant., 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x Search in Google Scholar

OECD (2006). Test No. 221: Lemna sp. Growth Inhibition Test, OECD Guidelines for the Testing of Chemicals, Section 2, OECD Publishing, Paris. https://doi.org/10.1787/9789264016194-en. Search in Google Scholar

Pala, G., Selamoglu, Z., Caglar, M. (2019). Epiphytic algae of Lemna minor L. growing in natural habitat and aquarium. Iranian J. Fish. Sci., 18 (4), 1076–1082. https://dx.doi.org/10.22092/ijfs.2019.118470. Search in Google Scholar

Radulović, O., Petrić, M., Raspor, M., Stanojević, O., Janakiev, T., Tadić, V., Stanković, S. (2019a). Culture-dependent analysis of 16S rRNA sequences associated with the rhizosphere of Lemna minor and assessment of bacterial phenol-resistance: Plant/bacteria system for potential bioremediation. Part II. Polish J. Environ. Studies, 28 (2), 811–822. https://doi.org/10.15244/pjoes/81687. Search in Google Scholar

Radulović, O., Petrić, M., Raspor, M., Tadić, V., Jovanović, P., Zečević, V. (2019b). Assessment of in vitro multiplication of Lemna minor in the presence of phenol: Plant/bacteria system for potential bioremediation. Part I. Polish J. Environ. Studies, 28 (2), 803–809. https://doi.org/10.15244/pjoes/84921. Search in Google Scholar

Radulović, O., Stanković, S., Uzelac, B., Tadić, V., Trifunović-Momčilov, M., Lozo J., Marković,M. (2020). Phenol removal capacity of the common duckweed (Lemna minor L.) and six phenol-resistant bacterial strains from its rhizosphere: In vitro evaluation at high phenol concentrations. Plants, 9, 599. https://doi.org/10.3390/plants9050599. Search in Google Scholar

Salmen, S. H., Alharbi, S. A., Faden, A. A., Wainwright, M. (2018). Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria. Saudi J. Biol. Sci., 25 (1), 105–110. https://doi.org/10.1016/j.sjbs.2017.07.006. Search in Google Scholar

Scherr, C., Simon, M., Spranger, J., Baumgartner, S. (2008). Test system stability and natural variability of a Lemna gibba L. bioassay. PLoS ONE, 3 (9), e3133. https://doi.org/10.1371/journal.pone.0003133. Search in Google Scholar

Stomp, A. M. (2005). The duckweeds: A valuable plant for biomanufacturing. Biotechnol. Annu. Rev., 11, 69–99. https://doi.org/10.1016/S1387-2656(05)11002-3. Search in Google Scholar

Thomson, E. L. S., Dennis, J. J. (2013). Common duckweed (Lemna minor) is a versatile high-throughput infection model for the Burkholderia cepacia complex and other pathogenic bacteria. PLoS ONE, 8 (11), e80102. https://doi.org/10.1371/journal.pone.0080102. Search in Google Scholar

Van Hoeck, A., Horemans, N., Monsieurs, P., Cao, H. X., Vandenhove, H., Blust, R. (2015). The first draft genome of the aquatic model plant Lemna minor opens the route for future stress physiology research and biotechno-logical applications. Biotechnol. Biofuels, 8, 188. https://doi.org/10.1186/s13068-015-0381-1. Search in Google Scholar

Wang, W., Kerstetter, R. A., Michael, T. P. (2011). Evolution of genome size in duckweeds (Lemnaceae). J. Bot., 2011, 570319. https://doi.org/10.1155/2011/570319. Search in Google Scholar

Yamamoto, Y. T., Rajbhandari, N., Lin, X., Bergmann, B. A., Nishimura, Y., Stomp, A. M. (2001). Genetic transformation of duckweed Lemna gibba and Lemna minor. In Vitro Cell. Devel. Biol. Plant, 37, 349–353. https://doi.org/10.1007/s11627-001-0062-6. Search in Google Scholar

Zhang, Y., Hu, Y., Yang, B., Ma, F., Lu, P., Li, L., Wan, C., Rayner, S., Chen, S. (2010). Duckweed (Lemna minor) as a model plant system for the study of human microbial pathogenesis. PLoS ONE, 5 (10), e13527. https://doi.org/10.1371/journal.pone.0013527. Search in Google Scholar

eISSN:
2255-890X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
General Interest, Mathematics, General Mathematics