Open Access

Cost-Benefit and Multi-Criteria Analysis of Wind Energy Parks Development Potential in Latvia


Cite

[1] Eurostat. Grenhouse gas emission statistics – air emissions accounts, 2021. [Online]. [Accessed 01.04.2021]. Available: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Greenhouse_gas_emission_statistics_-_air_emissions_accounts&oldid=549000 Search in Google Scholar

[2] Kijewska A., Bluszcz A. Analysis of greenhouse gas emissions in the European Union member states with the use of an agglomeration algorithm. Journal of Sustainable Mining 2017:15(4)133–142. https://doi.org/10.1016/j.jsm.2017.02.00110.1016/j.jsm.2017.02.001 Search in Google Scholar

[3] Intrac. Cost-benefit analysis. Oxford: Intrac, 2017. Search in Google Scholar

[4] Avdic Belltheus D.m Stahl P. Cost-Benefit Analysis of an integrated offshore grid in the Baltic sea. Berlin: Baltic InteGrid, 2019. Search in Google Scholar

[5] De Rus G. Introduction to Cost-Benefit Analysis: Looking for Reasonable Shortcuts. Cheltenham: Edward Elgar, 2021. Search in Google Scholar

[6] Mouter N. Cost-Benefit Analysis in Practice. Thesis. Delft: Delft University of Technology, 2014. Search in Google Scholar

[7] IRENA. Renewable Energy Technologies: Cost Analysis series. Wind Power. Abu Dhabi: IRENA, 2012:1(5/5). Search in Google Scholar

[8] ENTSO-E. Guideline for Cost Benefit Analysis of Grid Development Projects. Brussels: ENTSO-E, 2016. Search in Google Scholar

[9] Wind Europe. Wind energy is the cheapest source of electricity generation, 2019 [Online]. [Accessed 20.03.2021]. Available: https://windeurope.org/policy/topics/economics/ Search in Google Scholar

[10] Dean M. Chapter Six – Multi-criteria analysis. Advances in Transport Policy and Planning 2020:6:165–224. https://doi.org/10.1016/bs.atpp.2020.07.00110.1016/bs.atpp.2020.07.001 Search in Google Scholar

[11] Uroševic B. G., Marinovič B. Ranking construction of small hydro power plants using multi-criteria decision analysis. Renewable Energy 2021:172:1174–1183. https://doi.org/10.1016/j.renene.2021.03.11510.1016/j.renene.2021.03.115 Search in Google Scholar

[12] Vamza I., Valters K., Blumberga D. Multi-Criteria Analysis of Lignocellulose Substrate Pre-Treatment. Environmental and Climate Technologies 2020:24(3):483–492. https://doi.org/10.2478/rtuect-2020-011810.2478/rtuect-2020-0118 Search in Google Scholar

[13] Zlaugotne B., et al. GHG Performance Evaluation in Green Deal Context. Environmental and Climate Technologies 2020:24(1):431–441. https://doi.org/10.2478/rtuect-2020-002610.2478/rtuect-2020-0026 Search in Google Scholar

[14] Zlaugotne B., et al. Multi-Criteria Decision Analysis Methods Comparison. Environmental and Climate Technologies 2020:24(1):454–471. https://doi.org/10.2478/rtuect-2020-002810.2478/rtuect-2020-0028 Search in Google Scholar

[15] Kudurs E., et al. Are Industries Open for Renewable Energy? Environmental and Climate Technologies 2020:24(3):447–456. https://doi.org/10.2478/rtuect-2020-011510.2478/rtuect-2020-0115 Search in Google Scholar

[16] Ministry of Economics of Latvia. Nacionālais Enerģētikas un Klimata Plāns (National Energy and Climate Plan) [Online]. [Accessed 04.04.2021]. Available: https://www.em.gov.lv/lv/nacionalais-energetikas-un-klimata-plans (in Latvian) Search in Google Scholar

[17] Ministry of Economics of Latvia. Elektroenerģijas Ražošana (Electricity generation) [Online]. [Accessed 15.03.2021]. Available: https://www.em.gov.lv/lv/elektroenergijas-razosana (in Latvian) Search in Google Scholar

[18] Latvijas Vestnesis. Parakstīts Saprašanās memorands par Igaunijas un Latvijas vēja parka projektu (A Memorandum of Understanding has been signed on the Estonian and Latvian offshore wind farm project) [Online]. [Accessed 15.03.2021]. Available : https://lvportals.lv/dienaskartiba/320014-parakstits-saprasanas-memorands-par-igaunijas-un-latvijas-atkrastes-veja-parka-projektu-2020 (in Latvian) Search in Google Scholar

[19] Vides eksperti. Ietekmes uz vidi novērtējums (Environmental Impact Assessment) [Online]. [Accessed 10.04.2021]. Available: https://videseksperti.lv/ietekmes-uz-vidi-novertejums-2 (in Latvian) Search in Google Scholar

[20] Cabinet of Ministers Republic of Latvia. Regulations Regarding Permits for Increasing Electricity Production Capacities or the Introduction of New Production Equipment. Latvijas Vestnesis 2020:175. Search in Google Scholar

[21] Cabinet of Ministers Republic of Latvia. Construction Regulations for Structures in the Internal Waters, Territorial Waters and Exclusive Economic Zone of the Republic of Latvia. Latvijas Vestnesis 2014:211. Search in Google Scholar

[22] Sadales tīkls. Elektrostacijas pieslēgums (Power plant connection) [Online]. [Accessed 30.03.2021]. Available: https://sadalestikls.lv/lv/elektrostacijas-pieslegsana (in Latvian) Search in Google Scholar

[23] Augstsprieguma tīkls. Connections to the transmission grid [Online]. [Accessed 01.04.2021]. Available: https://www.ast.lv/en/content/connections-transmission-grid Search in Google Scholar

[24] Cabinet of Ministers Republic of Latvia. General Construction Regulations. Latvijas Vestnesis 2014:191. Search in Google Scholar

[25] Cabinet of Ministers Republic of Latvia. Elektroenerģijas ražošanas, pārvades un sadales būvju būvnoteikumi (Building regulations for electricity generation, transmission and distribution facilities.). Latvijas Vestnesis 2014:194. (in Latvian) Search in Google Scholar

[26] WindEnergy. Vēja ātrums 100 metru augstumā (The Speed of Wind at a Height of 100 Metres) [Online]. [Accessed 01.04.2021]. Available: http://www.windenergy.lv/map/en/veja-atrums-100-metru-augstuma/ Search in Google Scholar

[27] Dalla Longa F., et al. Wind potentials for EU and neighbouring countries. Luxembourg: Publications Office of the European Union, 2018. https://doi.org/10.2760/041705 Search in Google Scholar

[28] Augstsprieguma tīkls. Transmission network and substations [Online]. [Accessed 18.03.2021]. Available: https://www.ast.lv/en/transmission-network-info/transmission-network-and-substations Search in Google Scholar

[29] IRENA. Renewable power generation costs in 2019. Abu Dhabi: IRENA, 2020. Search in Google Scholar

[30] Hernandez C. V., Gonzalez J. S., Fernandez-Blanco R. New mothod to assess the long-term role of wind energy in reduction of CO2 emissions – Case study of the European Union. Journal of Cleaner Production 2019:207:1099–1111. https://doi.org/10.1016/j.jclepro.2018.09.24910.1016/j.jclepro.2018.09.249647268231007412 Search in Google Scholar

[31] Aldieri L., et al. Wind Power and Job Creation. Sustainability 2019:12(1):45. https://doi.org/10.3390/su1201004510.3390/su12010045 Search in Google Scholar

[32] Valdmanis G., Bazbauers G. Influence of wind power production on electricity market price. Environmental and Climate Technologies 2020:24(1):472–482. Https://doi.org/10.2478/rtuect-2020-002910.2478/rtuect-2020-0029 Search in Google Scholar

eISSN:
2255-8837
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Life Sciences, other