Cite

Blaškovičová, L., et al. (2019) Determination of hydrological characteristics, sub-task: Hydrological Drought Assessment - Assessment of changes and trends of monthly and annual flow rates, unpublished report, Slovak Hydrometeorological Institute, 2019.Search in Google Scholar

Damborská, I. – Gera, M. – Melo, M. – Lapin, M. – Nejedlík, P. (2015) Changes in the daily range of the air temperature in the mountainous part of Slovakia within the possible context of global warming. Meteorologische Zeitschrift, PrePub DOI 10.1127/metz/2015/0569.Search in Google Scholar

Domokos, M. – Sass, J. (1990) Long-term water balances for subcatchments and partial national areas in the Danube basin. Journal of Hydrology 112, pp. 267–292. DOI: 10.1016/0022- 1694(90)90019-T.Search in Google Scholar

Duethmann, D. – Blöschl, G. (2018) Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. Hydrol. Earth Syst. Sci. 22 (10), pp. 5143–5158. DOI: 10.5194/hess-22-5143-2018.10.5194/hess-22-5143-2018Search in Google Scholar

Ďurigová, M. – Hlavčová, K. – Komorníková, M. – Kalická, J. – Ballová, D. – Bacigál, T. (2019) Analysis of changes in average monthly flow rates in Slovakia in recent decades. Acta Hydrologica Slovaca. DOI: 10.31577/ahs-2019-0020.01.0002 Year 20, No. 1, 2019, 10-21.10.31577/ahs-2019-0020.01.0002Search in Google Scholar

Ďurigová, M. – Ballová, D. – Hlavčová, K. (2019) Analyses of Monthly Discharges in Slovakia Using Hydrological Exploratory Methods and Statistical Methods. Slovak Journal of Civil Engineering 27, pp. 36–43, https://doi.org/10.2478/sjce- 2019-0014.Search in Google Scholar

Ďurigová, M. – Hlavčová, K. – Poórová, J. (2020) Detection of Changes in Hydrological Time Series during Recent Decades. Slovak Journal of Civil Engineering 28, 2020, pp. 56–62, https://doi.org/10.2478/sjce-2020-0016.10.2478/sjce-2020-0016Search in Google Scholar

Fendeková, M. – Poórová, J. – Slivová, V., et al. (2018) Hydrological drought in Slovakia and forecast of its development, Comenius University in Bratislava, Faculty of Natural Sciences.Search in Google Scholar

Gao, H. – Tang, Q. – Ferguson, C. R. – Wood, E. F. – Lettenmaier, D. P. (2010) Estimating the water budget of major US river basins via remote sensing. International Journal of Remote Sensing 31 (14), pp. 3955–3978. DOI: 10.1080/01431161.2010.483488.10.1080/01431161.2010.483488Search in Google Scholar

Garaj, M. – Pekárová, P. – Pekár, J. – Miklánek, P. (2019) The Changes of Water Balance in the Eastern Slovakia. World Multidisciplinary Earth Sciences Symposium (WMESS 2019), IOP Conf. Series: Earth and Environmental Science 362 (2019) 012014, doi:10.1088/1755-1315/362/1/012014.10.1088/1755-1315/362/1/012014Search in Google Scholar

Halmová, D. – Pekárová, P. – Bačová-Mitková, V. (2019) Longterm trend changes of monthly and extreme discharges for different time periods. Acta Hydrologica Slovaca Vol. 20, No. 2, 2019, pp. 122-130, doi: 10.31577/ahs-2019-0020.02.0014.10.31577/ahs-2019-0020.02.0014Search in Google Scholar

Hobbins, M. T. – Ramírez, J. A. – Brown, T. C. (2004) Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complementary? Geophys. Res. Lett. 31 (13), n/a-n/a. DOI: 10.1029/2004GL019846.10.1029/2004GL019846Search in Google Scholar

Hobbins, M. T. – Ramírez, J. A. – Brown, T. C. – Claessens, L. H. (2001) The complementary relationship in estimation of regional evapotranspiration: The complementary relationship areal evapotranspiration and advection-aridity models. Water Resour. Res. 37 (5), pp. 1367–1387. DOI: 10.1029/2000WR900358.10.1029/2000WR900358Search in Google Scholar

Holko, L. – Sleziak, P. – Danko, M. – Bičárová, S. – Pociask-Karteczka, J. (2020) Analysis of changes in hydrological cycle of a pristine mountain catchment. 1. Water balance components and snow cover. Hydrol. Hydromech. 68, 2, 2020, pp. 180–191, doi: 10.2478/johh-2020-0010.10.2478/johh-2020-0010Search in Google Scholar

Huang, Y. – Franssen, H. J. – Herbst, M. - Hirschi, M. – Michel, D. - Seneviratne, S. I. et al. (2020) Evaluation of different methods for gap filling of long-term actual evapotranspiration time series measured by lysimeters. Vadose zone j. 19 (1). DOI: 10.1002/vzj2.20020.10.1002/vzj2.20020Search in Google Scholar

Jothityangkoon, Ch. – Sivapalan, M. (2009) Framework for exploration of climatic and landscape controls on catchment water balance, with emphasis on inter-annual variability. Journal of Hydrology 371 (1-4), pp. 154–168. DOI: 10.1016/j.jhy-drol.2009.03.030.Search in Google Scholar

Kramer, R. – Bounoua, L. – Zhang, P. – Wolfe, R. – Huntington, T. – Imhoff, M. et al. (2015) Evapotranspiration Trends Over the Eastern United States During the 20th Century. Hydrology 2 (2), pp. 93–111. DOI: 10.3390/hydrology2020093.10.3390/hydrology2020093Search in Google Scholar

Keszeliová, A. (2020) Comparison of changes in territorial evaporation in selected river basins of Slovakia (Porovnanie zmien územného výparu vo vybraných povodiach Slovenska.) Meteorologický časopis / Meteorological Journal. Vol. 23, No. 2 (2020), pp. 103-112.Search in Google Scholar

Lapin, M. – Damborská, I. – Gera, M. – Melo, M. – Hrvol, J. (2016) Potential and current evapotranspiration in Slovakia in the period 1951-2015 and scenarios of possible development until 2100, In: Proceedings of the International Conference in Kutná Hora, 28.-29.4.2016. Půdní a zemědělské sucho, Prague, VÚMOP, 210-225, ISBN 978-80-87361-55-9.Search in Google Scholar

Lapin, M. – Melo, M. (2012) Modification of climate classifications for warmer climate conditions in Slovakia; Meteorological Magazine, 15, 2012, 67-7.Search in Google Scholar

Makel, M. – Turbek J., et al. (2002) Hydrology - Terminological Interpretative Vocabulary, Bratislava, Ministry of the Environment of Slovakia, 157 p. ISSN 1335-1564Search in Google Scholar

Mastrotheodoros, T. – Pappas, Ch. – Molnár, P. – Burlando, P. – Manoli, G. – Parajka, J. et al. (2020) More green and less blue water in the Alps during warmer summers. Nat. Clim. Chang. 10 (2), pp. 155–161. DOI: 10.1038/s41558-019-0676-5.10.1038/s41558-019-0676-5Search in Google Scholar

Melo, M. – Lapin, M. – Kapolková, H. – Pecho, J. – Kružicová, A. (2013) Climate Trends in the Slovak Part of the Carpathians. In: Kozak, J., Ostapowicz, K., Bytnerowicz, A., Wyžga, B. (eds.) (2013): The Carpathians: Integral Nature and Society Towards Sustainability, Springer-Verlag, Berlin, Heidelberg, pp. 131-150.Search in Google Scholar

Mills, G. (2001) Ireland's water budget-model validation and a greenhouse experiment. Irish Geography 34 (2), pp. 124–134. DOI: 10.1080/00750770109555783.10.1080/00750770109555783Search in Google Scholar

Milly, P. C. D. – Dunne, K. A. (2001) Trends in evaporation and surface cooling in the Mississippi River Basin. Geophys. Res. Lett. 28 (7), pp. 1219–1222. DOI: 10.1029/2000GL012321.10.1029/2000GL012321Search in Google Scholar

Parajka, J. – Szolgay, J. (1998) Grid-based mapping of long-term mean annual potential and actual evapotranspiration in Slovakia. Hydrology, water resources and ecology in headwaters. IAHS Publication 248. Headwater 98 conference, Apr. 20-23, 1998, Merano, Italy.Search in Google Scholar

Parajka, J. – Szolgay J. – Mészároš, I. – Kostka, Z. (2004) Grid-based mapping of the long-term mean annual potential and actual evapotranspiration in upper Hron river basin, J. Hydrol. Hydromech., 52, 2004, 4, pp. 7 - 8.Search in Google Scholar

Pramuk, B. – Pekárová, P. – Škoda, P. – Halmová, D. – Bačová Mitková, V. (2016) The identification of changes in the regime of daily discharges in Slovakia. Acta Hydrologica Slovaca, Vol. 17, No. 1, 2016, pp. 65 – 77.Search in Google Scholar

Szalai, S. – Nejedlik, P. – Štastný, P. – Mikulová, K. – Szentimrey, T. – Bihari, Z. – Lakatos, M. (2012) Climate of the Carpathian Region, a project for a high resolution harmonised gridded database. Forum Carpaticum 2012, Stara Lesna.Search in Google Scholar

Szentimrey, T. – Bihari, Z. (2007) Mathematical background of the spatial interpolation methods and the software Mish (Meteorological Interpolation based on Surface Homogenised Data Basis). Proceedings from the Conference on Spatial Interpolation in Climatology and Meteorology, Budapest, Hungary, 2004, COST Action 719, COST Office, pp. 17-27.Search in Google Scholar

Szolgay, J. – Hlavčová, K. – Mosný, V. – Parajka, J. (1997) Temporal and spatial changes in the hydrological balance in Eastern Slovakia, STU, Bratislava, 213 p.Search in Google Scholar

Tomas-Burguera, M. – Beguería, S. – Vicente-Serrano, S. M. (2021) Climatology and trends of reference evapotranspiration in Spain. Int J. Climatol 41 (S1). DOI: 10.1002/joc.6817.10.1002/joc.6817Search in Google Scholar

Tomlain, J. (1997) Distribution of evapotranspiration in Slovakia for the period 1961-1990, Podzemna voda, III./1997 No. 1.Search in Google Scholar

Trenberth, K. E. – Smith, L. – Qian, T. – Dai, A. – Fasullo, J. (2007) Estimates of the Global Water Budget and Its Annual Cycle Using Observational and Model Data. Journal of Hydrometeorology 8 (4), pp. 758–769. DOI: 10.1175/JHM600.1.10.1175/JHM600.1Search in Google Scholar

Ukkola, A. M. – Prentice, I. C. (2013) A worldwide analysis of trends in water-balance evapotranspiration. Hydrol. Earth Syst. Sci. 17 (10), pp. 4177–4187. DOI: 10.5194/hess-17-4177-2013.10.5194/hess-17-4177-2013Search in Google Scholar

Valent, P. – Výleta, R. (2015) Calculating areal rainfall using a more efficient IDW interpolation algorithm. Int. J. Eng. Res. Sci. 1, 2015, pp. 9–17.Search in Google Scholar

Vido, J. – Nalevanková, P. (2020) Drought in the Upper Hron Region (Slovakia) between the Years 1984–2014. Water 12, 2020, 2887, doi:10.3390/w12102887.10.3390/w12102887Search in Google Scholar

Walter, M. T. – Wilks, D. S. – Parlange, J. – Schneider, R. L. (2004) Increasing Evapotranspiration from the Conterminous United States. J. Hydrometeor 5 (3), pp. 405–408. DOI: 10.1175/1525-7541(2004)005<0405:IEFTCU>2.0.CO;2.10.1175/1525-7541(2004)005<0405:IEFTCU>2.0.CO;2Search in Google Scholar

Weingartner, R. – Viviroli, D. – Schädler, B. (2007) Water resources in mountain regions: a methodological approach to assess the water balance in a highland-lowland-system. Hydrol. Process. 21 (5), pp. 578–585. DOI: 10.1002/hyp.6268.10.1002/hyp.6268Search in Google Scholar

Xiao, M. – Gao, Ming – Vogel, Richard M. – Lettenmaier, Dennis P. (2020) Runoff and Evapotranspiration Elasticities in the Western United States: Are They Consistent With Dooge's Complementary Relationship? Water Resour. Res. 56 (8). DOI: 10.1029/2019WR026719.10.1029/2019WR026719Search in Google Scholar

Zhang, K. – Kimball, J. S. – Nemani, R. R. – Running, S. W. (2010) A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006. Water Resour. Res. 46 (9). DOI: 10.1029/2009WR008800.10.1029/2009WR008800Search in Google Scholar

Zhang, K. – Kimball, J. S. – Nemani, R. R. – Running, S. W. – Hong, Y. – Gourley, Jonathan J. – Yu, Z. (2015) Vegetation Greening and Climate Change Promote Multidecadal Rises of Global Land Evapotranspiration. Scientific reports 5, p. 15956. DOI: 10.1038/srep15956.10.1038/srep15956462680026514110Search in Google Scholar

Zhang, L. – Dawes, W. R. – Walker, G. R. (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37 (3), pp. 701–708. DOI: 10.1029/2000WR900325.10.1029/2000WR900325Search in Google Scholar

Zhang, Y. – Leuning, R. – Chiew, Francis H. S. – Wang, E. – Zhang, L. – Liu, Ch., et al. (2012) Decadal Trends in Evaporation from Global Energy and Water Balances. Journal of Hydrometeorology 13 (1), pp. 379–391. DOI: 10.1175/JHM-D-11-012.1.10.1175/JHM-D-11-012.1Search in Google Scholar

eISSN:
1338-3973
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Engineering, Introductions and Overviews, other