Open Access

Examining Wind Flow's Impact on Multi-Storey Buildings: A Quest for Quality Improvement


Cite

Abdelfatah, N., Elawady, A., Irwin, P., Chowdhury, A. 2020. A study of aerodynamic pressures on elevated houses. Wind and Structures, 31(4), 335–350. DOI: 10.12989/WAS.2020.31.4.335 Search in Google Scholar

Blocken, B. 2018. LES over RANS in building simulation for outdoor and indoor applications: A foregone conclusion? Build. Simul. 11, 821–870. DOI: 10.1007/s12273-018-0459-3 Search in Google Scholar

Carrilho da Graça, G., Linden, P. 2016. Ten questions about natural ventilation of non-domestic buildings. Building and Environment, 107, 263-273. DOI: 10.1016/j.buildenv.2016.08.007 Search in Google Scholar

Chauhan, B. S., Chakrabarti, A., Ahuja, A. K. 2022. Study of wind loads on rectangular plan tall building under interference condition. Structures, 43, 105-130. DOI: 10.1016/j.istruc.2022.06.041 Search in Google Scholar

Chen, G., Hang, J., Chen, L., Lin, Y. 2023. Comparison of uniform and nonuniform surface heating effects on in-canyon airflow and ventilation by CFD simulations and scaled outdoor experiments. Building and Environment, 244, 110744. DOI: 10.1016/j.buildenv.2023.110744 Search in Google Scholar

Chen, Y., Tong, Z., Malkawi, A. 2017. Investigating natural ventilation potentials across the globe: Regional and climatic variations. Building and Environment, 122, 386-396. DOI: 10.1016/j.buildenv.2017.06.026 Search in Google Scholar

Chen, Y., Tong, Z., Wu, W., Samuelson, H., Malkawi, A., Norford, L. 2019. Achieving natural ventilation potential in practice: Control schemes and levels of automation. Applied Energy, 235, 1141-1152. DOI: 10.1016/j.apenergy.2018.11.016 Search in Google Scholar

Chu, C. 2023. Assessment of year-round wind-driven ventilation by an integrated ventilation model. Building and Environment, 243, 110710. DOI: 10.1016/j.buildenv.2023.110710 Search in Google Scholar

Elshaer, A., Aboshosha, H., Bitsuamlak, G., El Damatty, A., Dagnew, A. 2016. LES evaluation of wind-induced responses for an isolated and a surrounded tall building. Engineering Structures, 115, 179-195. DOI: 10.1016/j.engstruct.2016.02.026 Search in Google Scholar

Feng, C., Gu, M., Zheng, D. 2019. Numerical simulation of wind effects on super high-rise buildings considering wind veering with height based on CFD. Journal of Fluids and Structures, 91, 102715. DOI: 10.1016/j.jfluidstructs.2019.102715 Search in Google Scholar

Fontes-Silva, P. H., Loredo-Souza, A. M., Rocha, M. M. 2022. Experimental study in wind tunnel of interference effects on the reduced model of the CAARC building. Latin American Journal of Solids and Structures, 19(2), e430. DOI: 10.1590/1679-78256898 Search in Google Scholar

Furdas, Y., Yurkevych, Y., Zhelykh, V., Ulewicz, M. 2023. The Impact of Wind Flow on Multi-storey Buildings: Experimental Studies. In: Blikharskyy, Z. (eds) Proceedings of EcoComfort 2022. EcoComfort 2022. Lecture Notes in Civil Engineering, vol 290. Springer, Cham. DOI: 10.1007/978-3-031-14141-6_9 Search in Google Scholar

Gaur, N., Raj, R. 2021. Aerodynamic mitigation by corner modification on square model under wind loads employing CFD and wind tunnel. Ain Shams Engineering Journal, 13(1), 101521. DOI: 10.1016/j.asej.2021.06.007 Search in Google Scholar

Giachetti, A., Bartoli, G., Mannini, C. 2022. Aerodynamics of a tall building equipped with a solid screen close to the façade. Journal of Wind Engineering and Industrial Aerodynamics, 225, 104999. DOI: 10.1016/j.jweia.2022.104999 Search in Google Scholar

Gough, H., Sato, T., Halios, C., Grimmond, C., Luo, Z., Barlow, J., Robertson, A., Hoxey, R., Quinn, A. 2018. Effects of variability of local winds on cross ventilation for a simplified building within a full-scale asymmetric array: Overview of the Silsoe field campaign. Journal of Wind Engineering and Industrial Aerodynamics, 175, 408-418. DOI: 10.1016/j.jweia.2018.02.010 Search in Google Scholar

Hirose, C., Ikegaya, N., Hagishima, A., Tanimoto, J. 2022. Computational fluid dynamics for cross-ventilated airflow in an urban building. Japan Architectural Review, 6(1), e12312. DOI: 10.1002/2475-8876.12312 Search in Google Scholar

Huang, J., Gu, M., Gao, Y. 2021. Blockage effects on aerodynamics of isolated tall buildings under uniform turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 212, 104607. DOI: 10.1016/j.jweia.2021.104607 Search in Google Scholar

Huang, Y., Ou, G., Fu, J., Zhang, H. 2022. Prediction of mean and RMS wind pressure coefficients for low-rise buildings using deep neural networks. Engineering Structures, 274, 115149. DOI: 10.1016/j.engstruct.2022.115149 Search in Google Scholar

Hubová,O.,Franek,M., Véghová,I. 2022.The Wind Tunnel Study of the Influence of Terrain and Surrounding Structures on the Distribution of Wind Pressure on a Chimney. Civil and Environmental Engineering,18(2) 507-514. DOI: 10.2478/cee-2022-0048 Search in Google Scholar

Ikegaya, N., Hasegawa, S., Hagishima, A. 2018. Time-resolved particle image velocimetry for cross-ventilation flow of generic block sheltered by urban-like block arrays. Building and Environment, 147, 132-145. DOI: 10.1016/j.buildenv.2018.10.015 Search in Google Scholar

Ikegaya, N., Kikumoto, H., Sasaki, K., Yamada, S., Matsui, M. 2022. Applications of wide-ranging PIV measurements for various turbulent statistics in artificial atmospheric turbulent flow in a wind tunnel. Building and Environment, 225, 109590. DOI: 10.1016/j.buildenv.2022.109590 Search in Google Scholar

Jiang, Z., Kobayashi, T., Yamanaka, T., Sandberg, M. 2023. A literature review of cross ventilation in buildings. Energy and Buildings, 291, 113143. DOI: 10.1016/j.enbuild.2023.113143 Search in Google Scholar

Jóźwiak, R., Kacprzyk, J., Zurański, J. 1995. Wind tunnel investigations of interference effects on pressure distribution on a building. Journal of Wind Engineering and Industrial Aerodynamics, 57(2-3), 159-166. DOI: 10.1016/0167-6105(95)00004-B Search in Google Scholar

Kim, W., Tamura, Y., Yoshida, A., Yi, H. 2017. Interference effects of an adjacent tall building with various sizes on local wind forces acting on a tall building. Advances in Structural Engineering. DOI: 10.1177/1369433217750170 Search in Google Scholar

Li, J., Hu, S., Li, Q. 2020. Comparative study of full-scale and model-scale wind pressure measurements on a gable roof low-rise building. Journal of Wind Engineering and Industrial Aerodynamics, 208, 104448. DOI: 10.1016/j.jweia.2020.104448 Search in Google Scholar

Li, Y., Yin, J.-T., Chen, F.-B., Li, Q.-S. 2023. Machine learning-based prediction of wind forces on CAARC standard tall buildings. Wind and Structures, 36(6), 355–366. DOI: 10.12989/WAS.2023.36.6.355 Search in Google Scholar

Litovko, B. M., Lider, M. Y. 2021. Analysis of Ways to Increase Energy Efficiency of Ventilation and Air Conditioning Systems. Visnyk of Vinnytsia Politechnical Institute, (4), 47–55. DOI: 10.31649/1997-9266-2021-157-4-47-55 Search in Google Scholar

Myroniuk, K., Voznyak, O., Savchenko, O., Kasynets, M. 2023. Mathematical Modeling of an Air Flow Leakage with the Jets Interaction at the Variable Mode. In: Blikharskyy, Z. (eds) Proceedings of EcoComfort 2022. EcoComfort 2022. Lecture Notes in Civil Engineering, vol 290. Springer, Cham. DOI: 10.1007/978-3-031-14141-6_29 Search in Google Scholar

Nagar, S. K., Raj, R., Dev, N. 2022. Proximity effects between two plus-plan shaped high-rise buildings on mean and RMS pressure coefficients. Scientia Iranica, 29(3), 990-1005. DOI: 10.24200/sci.2021.55928.4484 Search in Google Scholar

Perén, J., Van Hooff, T., Leite, B., Blocken, B. 2015. CFD analysis of cross-ventilation of a generic isolated building with asymmetric opening positions: Impact of roof angle and opening location. Building and Environment, 85, 263-276. DOI: 10.1016/j.buildenv.2014.12.007 Search in Google Scholar

Potsis, T., Tominaga, Y., Stathopoulos, T. 2023. Computational wind engineering: 30 years of research progress in building structures and environment. Journal of Wind Engineering and Industrial Aerodynamics, 234, 105346. DOI: 10.1016/j.jweia.2023.105346 Search in Google Scholar

Quan Y., Chen B., Gu M., Tamura Y. 2010. Effects of geometrical parameters on most unfavorable wind pressure coefficients on gable roofs of low-rise buildings[J]. Engineering Mechanics, 27(7), 142-147. Search in Google Scholar

Shen G., Li Y., Han K., Yu H., Shao J. 2023. Surface Wind Pressure and Aerodynamic Coefficients of Canopy Affiliated to High-rise Buildings Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 50 (7), 120-129. DOI: 10.16339/j.cnki.hdxbzkb.2023085 Search in Google Scholar

Shirzadi, M., Naghashzadegan, M., A. Mirzaei, P. 2018. Improving the CFD modelling of cross-ventilation in highly-packed urban areas. Sustainable Cities and Society, 37, 451-465. DOI: 10.1016/j.scs.2017.11.020 Search in Google Scholar

Shirzadi, M., Tominaga, Y., Mirzaei, P. A. 2019. Experimental study on cross-ventilation of a generic building in highly-dense urban areas: Impact of planar area density and wind direction. Journal of Wind Engineering and Industrial Aerodynamics, 196, 104030. DOI: 10.1016/j.jweia.2019.104030 Search in Google Scholar

Shirzadi, M., Tominaga, Y., Mirzaei, P. A. 2019. Wind tunnel experiments on cross-ventilation flow of a generic sheltered building in urban areas. Building and Environment, 158, 60-72. DOI: 10.1016/j.buildenv.2019.04.057 Search in Google Scholar

Škvorc, P., Kozmar, H. 2023. The effect of wind characteristics on tall buildings with porous double-skin façades. Journal of Building Engineering, 69, 106135. DOI: 10.1016/j.jobe.2023.106135 Search in Google Scholar

Tominaga, Y., Blocken, B. 2016. Wind tunnel analysis of flow and dispersion in cross-ventilated isolated buildings: Impact of opening positions. Journal of Wind Engineering and Industrial Aerodynamics, 155, 74-88. DOI: 10.1016/j.jweia.2016.05.007 Search in Google Scholar

Tong, Z., Chen, Y., Malkawi, A. 2016. Defining the Influence Region in neighborhood-scale CFD simulations for natural ventilation design. Applied Energy, 182, 625-633. DOI: 10.1016/j.apenergy.2016.08.098 Search in Google Scholar

Tong, Z., Chen, Y., Malkawi, A. 2017. Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology. Applied Energy, 193, 276-286. DOI: 10.1016/j.apenergy.2017.02.041 Search in Google Scholar

Van Hooff, T., Blocken, B., Tominaga, Y. 2017. On the accuracy of CFD simulations of cross-ventilation flows for a generic isolated building: Comparison of RANS, LES and experiments. Building and Environment, 114, 148-165. DOI: 10.1016/j.buildenv.2016.12.019 Search in Google Scholar

Vita, G., Shu, Z., Jesson, M., Quinn, A., Hemida, H., Sterling, M., & Baker, C. 2020. On the assessment of pedestrian distress in urban winds. Journal of Wind Engineering and Industrial Aerodynamics, 203, 104200. DOI: 10.1016/j.jweia.2020.104200 Search in Google Scholar

Voznyak, O., Myroniuk, K., Spodyniuk, N., Sukholova, I., Dovbush, O., Kasynets, M. 2022. Air distribution in the room by swirl compact air jets at variable mode. Pollack Periodica, 17(3), 117-122. DOI: 10.1556/606.2022.00515 Search in Google Scholar

Y. Zheng, S. Chen. 2011. Wind tunnel experimental study of Wind pressure distribution on tall buildings considering surrounding interference,” 2011 International Conference on Consumer Electronics, Communications and Networks (CECNet), Xianning, China, 5477-5480. DOI: 10.1109/CECNET.2011.5769416. Search in Google Scholar

Yuan, Y., Yan, B., Zhou, X., Yang, Q., Wei, M., He, Y., Zhou, X., Li, X. 2023. Twisted-wind effect on the aerodynamic force acting on varying side-ratios tall buildings. Journal of Wind Engineering and Industrial Aerodynamics, 240, 105481. DOI: 10.1016/j.jweia.2023.105481 Search in Google Scholar

Zhai, Z., Johnson, M., Krarti, M. 2011. Assessment of natural and hybrid ventilation models in whole-building energy simulations. Energy and Buildings, 43(9), 2251-2261. DOI: 10.1016/j.enbuild.2011.06.026 Search in Google Scholar

Zhang, X., Buddhika, J., Wang, J., Weerasuriya, A., Tse, K. 2023. Numerical investigation of effects of trees on cross-ventilation of an isolated building. Journal of Building Engineering, 73, 106808. DOI: 10.1016/j.jobe.2023.106808 Search in Google Scholar

Zhao, L., Li, Y. 2023. Wind Load of Low-Rise Building Based on Fluent Equilibrium Atmospheric Boundary Layer. Tehnički vjesnik, 30 (4), 1274-1282. DOI: 10.17559/TV-20230205000324 Search in Google Scholar

Zhelykh, V., Ulewicz, M., Furdas, Y., Adamski, M., Rebman, M. 2021. Investigation of Pressure Coefficient Distribution on the Surface of a Modular Building. Energies, 15(13), 4644. DOI: 10.3390/en15134644 Search in Google Scholar

Zhong, H., Sun, Y., Shang, J., Qian, F., Zhao, F., Kikumoto, H., Jimenez-Bescos, C., Liu, X. 2022. Single-sided natural ventilation in buildings: A critical literature review. Building and Environment, 212, 108797. DOI: 10.1016/j.buildenv.2022.108797 Search in Google Scholar