Zitieren

1. Steinbrück M., Böttcher M., Air oxidation of Zircaloy-4, M5_ and ZIRLO™ cladding alloys at high temperatures. J Nucl Mater 2011; 414:276-85.10.1016/j.jnucmat.2011.04.012Search in Google Scholar

2. Zielinski A., Sobieszczyk S., Hydrogen-enhanced degradation and oxide effects in zirconium alloys for nuclear applications. Intl J Hydrogen Energy 2011;36:8619-29.10.1016/j.ijhydene.2011.04.002Search in Google Scholar

3. Lelièvre G., Fruchart D., Convert P., Lefè`vre-Joud F., Characterisation by neutron diffraction in high temperature pressurized water of the surface corrosion and hydrogen embrittlement of zircaloy-4. J Alloys Comp 2002;347:288-94.10.1016/S0925-8388(02)00775-2Search in Google Scholar

4. Zeng C., Ling Y., Bai Y., Zhang R., Dai X., Chen Y., Hydrogen permeation characteristic of nanoscale passive films formed on different zirconium alloys. Intl J Hydrogen Energy 2016; 41:7676-90.10.1016/j.ijhydene.2016.01.174Search in Google Scholar

5. Selmi N., Sari A., Study of Oxidation Kinetics in Air of Zircaloy-4 by in Situ X-Ray Diffraction. Adv Mater Phys Chem 2013;3:168-73.10.4236/ampc.2013.32023Search in Google Scholar

6. Baek J. H., Jeong Y. H., Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation. J Nucl Mater 2008;372:152-9.10.1016/j.jnucmat.2007.02.011Search in Google Scholar

7. Allen T. R., Konings R. J. M., Motta A. T., Corrosion of Zirconium Alloys. In: Konings RJM, editor. Comprehensive Nuclear Materials, Amsterdam: Elsevier: 2012, vol. 5, p. 49-68.10.1016/B978-0-08-056033-5.00063-XSearch in Google Scholar

8. Gabory de B., Motta A. T., Wang K., Transmission electron microscopy characterization of Zircaloy-4 and ZIRLO™ oxide layers. J Nucl Mater 2015;456:272-80.10.1016/j.jnucmat.2014.09.073Search in Google Scholar

9. Chen W., Wang L., Lu S., Influence of oxide layer on hydrogen desorption from zirconium hydride. J Alloys Comp 2009;469:142-5.10.1016/j.jallcom.2008.01.157Search in Google Scholar

10. Birchley J., Fernandez-Moguel L., Simulation of air oxidation during a reactor accident sequence: Part 1 - Phenomenology and model development. Ann Nucl Energy 2012;40:163-70.10.1016/j.anucene.2011.10.019Search in Google Scholar

11. Hózer Z., Győri C., Matus L., Horvàth M., Ductile-to-brittle transition of oxidised Zircaloy-4 and E110 claddings. J Nucl Mater 2008;373:415-23.10.1016/j.jnucmat.2007.07.002Search in Google Scholar

12. Elmoselhi M. B., Hydrogen uptake by oxidized zirconium alloys. J Alloys Comp 1995;231:716-21.10.1016/0925-8388(95)01759-3Search in Google Scholar

13. Steinbrück M., Birchley J., Boldyrev A. V., Goryachev A. V., Grosse M., Haste T. J., et al., Hightemperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys. Progr Nucl Energy 2010;52:19-36.10.1016/j.pnucene.2009.07.012Search in Google Scholar

14. Fernandez-Moguel L., Birchley J., Simulation of air oxidation during a reactor accident sequence: Part 2 - Analysis of PARAMETER-SF4 air ingress experiment using RELAP5/SCDAPSIM. Ann Nucl Energy 2012;40:141-52.10.1016/j.anucene.2011.10.018Search in Google Scholar

15. Coindreau O., Duriez Ch., Ederli S., Air oxidation of Zircaloy-4 in the 600-1000 C temperature range: modelling for ASTEC Code application. J Nucl Mater 2010;405:207-51.10.1016/j.jnucmat.2010.07.038Search in Google Scholar

16. Kim J. H., Lee M. H., Choi B. K., Jeong Y. H., Effects of oxide and hydrogen on the circumferential mechanical properties of Zircaloy-4 cladding. Nucl Eng Design 2006;236:1867-73.10.1016/j.nucengdes.2006.02.010Search in Google Scholar

17. Bertolino G., Meyer G., Perez Ipiña J., Degradation of the mechanical properties of Zircaloy-4 due to hydrogen embrittlement. J Alloys Comp 2002;330-332:408-13.10.1016/S0925-8388(01)01576-6Search in Google Scholar

18. Zielinski A., Degradation of some hydride-forming metals and their alloys. In: Goltsov VA. Editor. Progress in Hydrogen Treatment of Materials, Donetsk, Ukraina & Coral Gables, USA: Internal Association for Hydrogen Energy; 2001, 451-472.Search in Google Scholar

19. Steinbrück M., Hydrogen absorption by zirconium alloys at high temperatures. J Nucl Mater 2004;334:58-64.10.1016/j.jnucmat.2004.05.007Search in Google Scholar

20. Shrivastava K. S., Kulkarni A. S., Ramanjaneyulu P. S., Sunil S., Saxena M. K., Singh R. N., et al., Determination of diffusion coefficients of hydrogen and deuterium in Zr-2.5%Nb pressure tube material using hot vacuum extraction-quadrupole mass spectrometry. J Nucl Mater 2015;461:151-6.10.1016/j.jnucmat.2015.03.021Search in Google Scholar

21. Liu Y., Peng Q., Zhao W., Jiang H., Hydride precipitation by cathodic hydrogen charging method in zirconium alloys. Mater Chem Phys 2008;110:56-60.10.1016/j.matchemphys.2007.12.028Search in Google Scholar

22. Lanzani L., Ruch M., Comments on the stability of zirconium hydride phases in Zircaloy. J Nucl Mater 2004;324:165-76.10.1016/j.jnucmat.2003.09.013Search in Google Scholar

23. Daum R. S., Chu Y. S., Motta A. T., Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction. J Nucl Mater 2009;392:453-63.10.1016/j.jnucmat.2009.04.004Search in Google Scholar

24. Qin W., Szpunar J. A., Kozinski J., Hydride-induced degradation of hoop ductility in textured zirconium-alloy tubes: A theoretical analysis. Acta Mater 2012;60:4845-55.10.1016/j.actamat.2012.06.003Search in Google Scholar

25. Blackmur M. S., Robson J. D., Preuss M., Zanellato O., Cernik R. J., Shi S-O., et al., Zirconium hydride precipitation kinetics in Zircaloy-4 observed with synchrotron X-ray diffraction. J Nucl Mater 2015;464:160-9.10.1016/j.jnucmat.2015.04.025Search in Google Scholar

26. Le Saux M., Besson J., Carassou S., Poussard C., Averty X., Behavior and failure of uniformly hydrided Zircaloy-4 fuel claddings between 25°C and 480°C under various stress states, including RIA loading conditions. Eng Failure Analys 2010;17:683-700.10.1016/j.engfailanal.2009.07.001Search in Google Scholar

27. Oh S., Jang C., Kim J. H., Jeong Y. H., Effect of Nb on hydride embrittlement of Zr-xNb alloys. Mater Sci Eng A 2010;527:1306-13.10.1016/j.msea.2009.11.024Search in Google Scholar

28. Yamanaka S., Setoyama D., Muta H., Uno M., Kuroda M., Takeda K., et al., Characteristics of zirconium hydrogen solid solution. J Alloys Comp 2004;372:129-3510.1016/j.jallcom.2003.09.140Search in Google Scholar

29. Hong S. I., Lee K. W., Kim K. T., Effect of the circumferential hydrides on the deformation and fracture of Zircaloy cladding tubes. J Nucl Mater 2002;303:169-76.10.1016/S0022-3115(02)00814-0Search in Google Scholar

30. Pierron O. N., Koss D. A., Motta A. T., Chan K. S., The influence of hydride blisters on the fracture of Zircaloy-4. J Nucl Mater 2003;322:21-35.10.1016/S0022-3115(03)00299-XSearch in Google Scholar

31. Kim J. H., Lee M. H., Choi B. K., Jeong Y. H., Effect of the hydrogen contents on the circumferential mechanical properties of zirconium alloy claddings. J Alloys Comp 2007;431:155-61. 10.1016/j.jallcom.2006.05.074Search in Google Scholar

32. Lee K. W., Hong S. I., Zirconium hydrides and their effect on the circumferential mechanical properties of Zr-Sn-Fe-Nb tubes. J Alloys Comp 2002;346:302-7.10.1016/S0925-8388(02)00527-3Search in Google Scholar

33. Min S-J., Kim M-S., Kim K-T., Cooling rate- and hydrogen content-dependent hydride reorientation and mechanical property degradation of Zr-Nb alloy claddings. J Nucl Mater 2013;441:306-14.10.1016/j.jnucmat.2013.06.006Search in Google Scholar

34. Daunys M., Dundulis R., Grybenas A., Krasauskas P., Hydrogen influence on mechanical and fracture mechanics characteristics of zirconium Zr-2.5Nb alloy at ambient and elevated temperatures. Nucl Eng Design 2008;238:2536-45.10.1016/j.nucengdes.2008.05.018Search in Google Scholar

35. Chakraborty P., Moitra A., Saha-Dasgupta T., Effect of hydrogen on degradation mechanism of zirconium: A molecular dynamics study. J Nucl Mater 2015;466:172-8.10.1016/j.jnucmat.2015.07.031Search in Google Scholar

36. Huang J-H., Yeh M-S., Gaseous Hydrogen Embrittlement of a Hydrided Zirconium Alloy. Met Mater Trans A 1998;29:1047-56.10.1007/s11661-998-1014-0Search in Google Scholar

37. Zhao C., Song X., Yang Y., Zhang B., Hydrogen absorption cracking of zirconium alloy in the application of nuclear industry. Intl J Hydrogen Energy 2013;38:10903-11.10.1016/j.ijhydene.2013.01.009Search in Google Scholar

38. Bertolino G., Meyer G., Perez Ipiña J., Effects of hydrogen content and temperature on fracture toughness of Zircaloy-4. J Nucl Mater 2003;320:272-9.10.1016/S0022-3115(03)00193-4Search in Google Scholar

39. Pshenichnikov A., Stuckert J., Walter M., Hydride precipitation, fracture and plasticity mechanisms in pure zirconium and Zircaloy-4 at temperatures typical for the postulated loss-ofcoolant accident. Nucl Eng Design 2016;301:366-77.10.1016/j.nucengdes.2016.03.024Search in Google Scholar

40. Udagawa Y., Yamaguchi M., Abe H., Sekimura N., Fuketa T., Ab initio study on plane defects in zirconium-hydrogen solid solution and zirconium hydride. Acta Mater 2010;58:3927-38.10.1016/j.actamat.2010.03.034Search in Google Scholar

41. McRae G. A., Coleman C. E., Leitch B. W., The first step for delayed hydride cracking in zirconium alloys. J Nucl Mater 2010;396:130-43.10.1016/j.jnucmat.2009.08.019Search in Google Scholar

42. Yamanaka S., Nishizaki T., Uno M., Katsura M., Hydrogen dissolution into zirconium oxide. J Alloys Comp 1999;293-295:38-41.10.1016/S0925-8388(99)00396-5Search in Google Scholar

43. Grosse M., Steinbrueck M., Lehmann E., Vontobel P., Kinetics of Hydrogen Absorption and Release in Zirconium Alloys During Steam Oxidation. Oxid Met 2008;70:149-162.10.1007/s11085-008-9113-2Search in Google Scholar

44. Kiran Kumar M., Aggarwal S., Kain V., Saario T., Bojinov M., Effect of dissolved oxygen on oxidation and hydrogen pick up behaviour-Zircaloy vs Zr-Nb alloys. Nucl Eng Design 2010;240:985-94.10.1016/j.nucengdes.2009.12.021Search in Google Scholar

45. Sundell G., Thuvander M., Andrén H-O., Barrier oxide chemistry and hydrogen pick-up mechanisms in zirconium alloys. Corr Sci 2016;102:490-502.10.1016/j.corsci.2015.11.002Search in Google Scholar

46. Cha H-J., Jang K-N., An J-H., Kim K-T., The effect of hydrogen and oxygen contents on hydride reorientations of zirconium alloy cladding tubes. Nucl Eng Techn 2015;147:746-55.Search in Google Scholar

47. Große M., Lehmann E., Steinbrück M., Kühne G., Stuckert J., Influence of oxide layer morphology on hydrogen concentration in tin and niobium containing zirconium alloys after high temperature steam oxidation. J Nucl Mater 2009;385:339-45.10.1016/j.jnucmat.2008.12.021Search in Google Scholar

48. Couet A., Motta A. T., Comstock R. J., Hydrogen pickup measurements in zirconium alloys: Relation to oxidation kinetics. J Nucl Mater 2014;451:1-13.10.1016/j.jnucmat.2014.03.001Search in Google Scholar

49. Suman S., Khan M. K., Pathak M., Singh R. N., Chakravartty J. K., Hydrogen in Zircaloy: Mechanism and its impacts. Intl J Hydrogen Energy 2015;49:5976-94.10.1016/j.ijhydene.2015.03.049Search in Google Scholar

50. Glazoff M. V., Tokuhiro A., Rashkeev S. N., Sabharwall P., Oxidation and hydrogen uptake in zirconium, Zircaloy-2 and Zircaloy-4: Computational thermodynamics and ab initio calculations. J Nucl Mater 2014;444:65-75. 10.1016/j.jnucmat.2013.09.038Search in Google Scholar

51. Gong W., Zhang H., Wu C., Tian H., Wang X., The role of alloying elements in the initiation of nanoscale porosity in oxide films formed on zirconium alloys. Corr Sci 2013;77:391-6.10.1016/j.corsci.2013.08.006Search in Google Scholar

52. Neogy S., Srivastava D., Tewari R., Singh R. N., Dey G. K., Banerjee S., Microstructural study of hydride formation in Zr-1Nb alloy. J Nucl Mater 2003;322:195-203.10.1016/j.jnucmat.2003.07.002Search in Google Scholar

53. Hsu H-H., An evaluation of hydrided Zircaloy-4 cladding fracture behavior by X-specimen test. J Alloys Comp 2006;426:256-62.10.1016/j.jallcom.2005.12.113Search in Google Scholar

54. Singh R. N., Kumar N., Kishore R., Roychaudhury S., Sinha T. K., Kashyap B. P., Delayed hydride cracking in Zr-2.5Nb pressure tube material. J Nucl Mater 2002;304:189-203.10.1016/S0022-3115(02)00880-2Search in Google Scholar

55. Mani Krishna K. V., Sain A., Samajdar I., Dey G. K., Srivastava D., Neogy S., et al., Resistance to hydride formation in zirconium: An emerging possibility. Acta Mater 2006;54:4665-75.10.1016/j.actamat.2006.06.004Search in Google Scholar

56. Bind A. K., Singh R. N., Khandelwal H. K., Sunil S., Avinash G., Chakravartty J. K., et al., Influence of loading rate and hydrogen content on fracture toughness of Zr-2.5Nb pressure tube material. J Nucl Mater 2015;465:177-88.10.1016/j.jnucmat.2015.05.050Search in Google Scholar

57. Viswanathan U. K., Singh R. N., Basak C. B., Anantharaman S., Sahoo K. C., Evaluation of the effect of hydrogen on the toughness of Zircaloy-2 by instrumented drop weight impact testing. J Nucl Mater 2006;350:310-9.10.1016/j.jnucmat.2006.01.016Search in Google Scholar

58. Gou Y., Li Y., Liu Y., Chen H., Ying S., Evaluation of a delayed hydride cracking in Zr-2.5Nb CANDU and RBMK pressure tubes. Mater Design 2009;30:1231-5.10.1016/j.matdes.2008.06.011Search in Google Scholar

59. Shavkunov S. P., Tolkachev A. B., Electrochemical Hydrogen Evolution at a Single-Crystal Zirconium Face in Sulfuric Acid Solutions. Russ J Electrochem 2002;38:714-9.10.1023/A:1016388415028Search in Google Scholar

60. Bertolino G., Meyer G., Perez Ipiña J., In situ crack growth observation and fracture toughness measurement of hydrogen charged Zircaloy-4. J Nucl Mater 2003;322:57-65.10.1016/S0022-3115(03)00305-2Search in Google Scholar

61. Szoka A., Gajowiec G., Serbinski W., Zielinski A., Effect of surface state and stress on an oxidation of the zircaloy-2 alloy. Intl J Manag Inform Techn Eng 2016;4:55-64.Search in Google Scholar

62. Siripurapu R. K., Szpunar B., Szpunar J. A., Molecular Dynamics Study of Hydrogen in α- Zirconium. Intl J Nucl Energy 2014; International Journal of Nuclear Energy 2014;2014: Article ID 912369, six pages.Search in Google Scholar

eISSN:
2083-4799
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Materialwissenschaft, Funktionelle und Intelligente Materialien