Uneingeschränkter Zugang

The influence of sulfur addition on the hazard-type reaction of ilmenite ores with sulfuric acid


Zitieren

1. Johnson, R.W., Audy, S.W. & Unwin, S.D. (2003). Essential Practices for Managing Chemical Reactivity Hazards. New York: AIChE.10.1002/9780470925300 Search in Google Scholar

2. Bretherick’s Handbook of Reactive Chemical Hazards (P.G. Urben, Ed.). Amsterdam: Academic Press, 2006. Search in Google Scholar

3. OSHA. (2016). Hazard Communication. Hazard Classification Guidance for Manufacturers, Importers, and Employers. Search in Google Scholar

4. Gustin, J.L. (2002). How the study of accident case histories can prevent runaway reaction accidents from recurring. Proc. Safety Environ. Protec., 80, 16–24. DOI: 10.1205/095758202753502370.10.1205/095758202753502370 Search in Google Scholar

5. Fujita, M., Izato, Y., Iizuka, Y. & Miyake, A. (2019). Thermal hazard evaluation of runaway polymerization of acrylic acid. Proc. Safety Environ. Protec., 129, 339–347. DOI: 10.1016/j.psep.2019.08.003.10.1016/j.psep.2019.08.003 Search in Google Scholar

6. Casson, V., Lister, D.G., Milazzo, M.F. & Maschio, G. (2012). Comparison of criteria for predi ction of ru naway reactions in the sulphuric acid catalyzed esterification of acetic anhydride and methanol. J. Loss Prev. Proc. Ind., 25, 209–217. DOI: 10.1016/j.jlp.2011.09.002.10.1016/j.jlp.2011.09.002 Search in Google Scholar

7. Ni, L., Mebarki, A., Jiang, J., Zhang, M., Pensee, V. & Dou, Z. (2016). Thermal risk in batch reactors: Theoretical framework for runaway and accident. J. Loss Prev. Proc. Ind., 43, 75–82. DOI: 10.1016/j.jlp.2016.04.004.10.1016/j.jlp.2016.04.004 Search in Google Scholar

8. Sasikumar, C., Rao, D.S., Srikanth, S., Ravikumar, B., Mukhopadhyay, N.K. & Mehrotra, S.P. (2004). Effect of mechanical activation on the kinetics of sulfuric leaching of beach sand ilmenite from Orissa, India. Hydrometallurgy, 75, 189–204. DOI: 10.1016%2Fj.hydromet.2004.08.001.10.1016/j.hydromet.2004.08.001 Search in Google Scholar

9. Liang, B., Li, C., Zhang, C. & Zhang, Y. (2005). Leaching kinetics of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy, 76, 173–179. DOI: 10.1016%2Fj.hydromet.2004.10.006.10.1016/j.hydromet.2004.10.006 Search in Google Scholar

10. Li, C., Liang, B., Guo, L. & Wu, Z. (2006). Effect of mechanical activation on the dissolution of Panzhihua ilmenite. Minerals Engineering, 19(14), 1430–1438. DOI: 10.1016/j.mineng.2006.02.005.10.1016/j.mineng.2006.02.005 Search in Google Scholar

11. Greenwood, N.N. & Earnshaw, A. (1994). Chemistry of the elements. New York: Pergamon Press. Search in Google Scholar

12. Winkler, J. (2003). Titanium Dioxide, Hannover: Vincentz Network. Search in Google Scholar

13. Middlemas, S., Fang, Zak, Z. & Fan, P. (2013). A new method for production of titanium dioxide pigment. Hydrometallurgy, 131–132, 107–113. DOI: 10.1016/j.hydromet.2012.11.002.10.1016/j.hydromet.2012.11.002 Search in Google Scholar

14. Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2009). Physicochemical characterization of raw materials and co-products from the titanium dioxide industry. J. Hazard. Mat., 166, 1429–1440. DOI: 10.1016/j.jhazmat.2008.12.067.10.1016/j.jhazmat.2008.12.06719167156 Search in Google Scholar

15. Zhang, W., Zhu, Z. & Yong, Cheng, A. (2011). A literature review of titanium metallurgical processes. Hydrometallurgy, 108, 177–188. DOI: 10.1016/j.hydromet.2011.04.005.10.1016/j.hydromet.2011.04.005 Search in Google Scholar

16. Mantero, J., Gázquez, M.J., Bolívar, J.P., García-Tenorio, R. & Vaca, F. (2013). Radioactive characterization of the main materials involved in the titanium dioxide production process and their environmental radiological impact. J. Environ. Radioactivity, 120, 26–32. DOI: 10.1016/j.jenvrad.2013.01.002.10.1016/j.jenvrad.2013.01.002 Search in Google Scholar

17. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Sulfuric Acid Leaching of Altered Ilmenite Using Thermal, Mechanical and Chemical Activation. Minerals, 10(6), 538. DOI: 10.3390/min10060538.10.3390/min10060538 Search in Google Scholar

18. Dubenko, A.V., Nikolenko, M.V., Kostyniuk, A. & Likozar, B. (2020). Mechanism, Thermodynamics and Kinetics of Rutile Leaching Process by Sulfuric Acid Reactions. Processes, 8(6), 640. DOI: 10.3390/pr8060640.10.3390/pr8060640 Search in Google Scholar

19. Moreno, V.C., Kanes, R., Wilday, J. & Vechot, L. (2015). Modeling of the venting of an untempered system under runaway conditions. J. Loss Prev. Process Ind., 36, 171–182. DOI: 10.1016%2Fj.jlp.2015.04.016.10.1016/j.jlp.2015.04.016 Search in Google Scholar

20. Lin, C.P., Li, J.S., Tseng, J.M. & Mannan, M.S. (2016). Thermal runaway reaction for highly exothermic material in safe storage temperature. J. Loss Prev. Proc. Ind. 40, 259–265. DOI: 10.1016/j.jlp.2016.01.006.10.1016/j.jlp.2016.01.006 Search in Google Scholar

21. Parapari, P.S., Irannajad, M. & Mehdilo, A. (2016). Modification of ilmenite surface properties by superficial dissolution method. Miner. Engin., 92, 160–167. DOI: 10.1016%2Fj.mineng.2016.03.016.10.1016/j.mineng.2016.03.016 Search in Google Scholar

22. Welham, N.J. & Llewellyn, D.J. (1998). Mechanical enhancement of the dissolution of ilmenite. Minerals Engineering, 11, 827–841. DOI: 10.1016/S0892-6875(98)00070-3.10.1016/S0892-6875(98)00070-3 Search in Google Scholar

23. Yu, J., Chen, L. & Peng J. (2012). Thermal hazard research smokeless fireworks. J. Thermal Anal. Calorimetry, 109, 1151–1156. DOI: 10.1007/s10973-012-2367-6.10.1007/s10973-012-2367-6 Search in Google Scholar

24. El-Sladek, M.H., Ahmed, H.M., El-Barawy, K., Morsi, M.B., El-Didamony, H. & Bjorkman, B. (2018). Non-isothermal carbothermic reduction kinetics of mechanically activated ilmenite containing self-reducing mixtures. J. Thermal Anal. Calorimetry, 131, 2457–2465. DOI: 10.1007/s10973-017-6743-0.10.1007/s10973-017-6743-0 Search in Google Scholar

25. Zheng, F., Guo, Y., Duan, W., Liu, S., Qiu, G., Chen, F., Jiang, T. & Wang, S. (2018). Transformation of Ti-bearing mineral in Panzhinua electric furnace titanium slag during oxidation roasting process. J. Thermal Anal. Calorimetry, 131, 1767–1776. DOI: 10.1007/s10973-017-6675-8.10.1007/s10973-017-6675-8 Search in Google Scholar

26. Jablonski, M., Lawniczak-Jablonska, K. & Klepka, M.T. (2012). Investigation of phase composition of ilmenites and influence of this parameter on thermokinetics of reaction with sulfuric acid. J. Thermal Anal. Calorimetry, 109, 1379–1385. DOI: 10.1007/s10973-011-2136-y.10.1007/s10973-011-2136-y Search in Google Scholar

27. Jablonski, M. & Tylutka, S. (2016). The influence of initial concentration of sulfuric acid on the degree of leaching of the main elements of ilmenite raw materials. J. Thermal Anal. Calorimetry, 124, 355–361. DOI: 10.1007/s10973-015-5114-y.10.1007/s10973-015-5114-y Search in Google Scholar

28. Jablonski, M. & Przepiera, A. (2001). Kinetic model for the reaction of ilmenite with sulfuric acid. J. Thermal Anal. Calorimetry, 65, 583–590. DOI: 10.1023/A:1012405826498.10.1023/A:1012405826498 Search in Google Scholar

29. Coddell, M. (1959). Analytical chemistry of titanium metals and compounds. New York, Intersciences Publishers Inc. Search in Google Scholar

30. Barin, I. & Knacke, O. (1973). Thermochemical properties of inorganic substances. Springer-Verlag, Berlin. Search in Google Scholar

31. Jablonski, M. (2009). Influence of particle size distribution on thermokinetics of ilmenite with sulfuric acid reaction. J. Thermal Anal. Calorimetry, 96, 971–977. DOI: 10.1007/s10973-009-0048-x.10.1007/s10973-009-0048-x Search in Google Scholar

eISSN:
1899-4741
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Industrielle Chemie, Biotechnologie, Chemieingenieurwesen, Verfahrenstechnik