Zitieren

[1] Chery D., Lair V., Cassir M. Overview on CO2 valorization: challenge of molten carbonates. Frontiers in Energy Research 2015:3:43. https://doi.org/10.3389/fenrg.2015.0004310.3389/fenrg.2015.00043 Search in Google Scholar

[2] Alvarez E., et al. EU Demonstration Programme for CO2 Capture and Storage (CCS). ZEP’s Proposal. 2008. Search in Google Scholar

[3] European Commission. A European Green Deal [Online]. [Accessed 16.10.2020]. Available: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en Search in Google Scholar

[4] European Parliament. Legislative Train 12.2020. 1A European Green Deal. Strasbourg: EP, 2020. Search in Google Scholar

[5] European Commission. 2030 climate and energy framework [Online]. [Accessed 10.01.2021]. Available: https://ec.europa.eu/clima/policies/strategies/2030_en Search in Google Scholar

[6] Statista. Share of global carbon dioxide (CO2) emissions from fossil fuels and cements as of 2020, by economic sector [Online]. [Accessed 18.09.2020]. Available: https://www.statista.com/statistics/1129656/global-share-of-co2-emissions-from-fossil-fuel-and-cement/ Search in Google Scholar

[7] Our World Data. CO2 emissions [Online]. [Accessed 18.09.2020]. Available: https://ourworldindata.org/co2-emissions Search in Google Scholar

[8] Eurostat. Greenhouse emissions by source sector [Online]. [Accessed 19.05.2021]. Available: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_air_gge&lang=en Search in Google Scholar

[9] Ritchie H. Sector by sector: where do global greenhouse gas emissions come from? Our World in data. 2020. Search in Google Scholar

[10] International Atomic Energy Agency. Transitions to low carbon electricity systems: Key economic and investment trends. Vienna: IAEA, 2019. Search in Google Scholar

[11] Central Statistical Bureau Databases. Air emissions accounts [Online]. [Accessed 7.09.2020]. Available: https://data1.csb.gov.lv/pxweb/lv/vide/vide__vide__ikgad/VIG070.px/table/tableViewLayout1/ (in Latvian) Search in Google Scholar

[12] Eurostat News release. Early estimates of CO2 emissions from energy use. Luxembourg: Eurostat Press Office, 2020. Search in Google Scholar

[13] Kudurs E., et al. Are Industries Open for Renewable Energy? Environmental and Climate Technologies 2020:24(3):447–456. https://doi.org/10.2478/rtuect-2020-011510.2478/rtuect-2020-0115 Search in Google Scholar

[14] Latvian Center for Environment, Geology and Meteorology. 2020. gadā iesniegtās siltumnīcefekta gāzu inventarizācijas kopsavilkums (Greenhouse gases inventory summary, submitted in 2020.) Riga: LVGMC, 2020. (in Latvian) Search in Google Scholar

[15] MefCO2 project [Online]. [Accessed 15.11.2020]. Available: http://www.mefco2.eu/ Search in Google Scholar

[16] Phoenix Initiative. A European Integrated Approach to CO2 Valorisation [Online]. [Accessed 06.03.2021]. Available: https://www.phoenix-co2-valorisation.eu/lw_resource/datapool/systemfiles/cbox/56/live/lw_datei/flyer-phoenix_180215_v6.pdf Search in Google Scholar

[17] Olajire A. A. Valorization of greenhouse carbon dioxide emissions into value-added products by catalytic processes. Journal of CO2 Utilization 2013:3–4:74–92. https://doi.org/10.1016/j.jcou.2013.10.00410.1016/j.jcou.2013.10.004 Search in Google Scholar

[18] European Biofuels Technology Platform. Biomass with CO2 Capture and Storage (Bio-CCS). The way forward for Europe. Oslo: Bellona, 2012. Search in Google Scholar

[19] IEA. Putting CO2 to Use. Creating value from emissions. Paris: International Energy Agency, 2019. Search in Google Scholar

[20] EU Open Data Portal. CORDIS - EU research projects under Horizon 2020 (2014-2020) [Online]. [Accessed 15.10.2020]. Available: https://data.europa.eu/euodp/en/data/dataset/cordisH2020projects Search in Google Scholar

[21] Cascio E. L., et al. Key performance indicators for integrated natural gas pressure reduction stations with energy recovery. Energy Conversion and Management 2018:164:219–229. https://doi.org/10.1016/j.enconman.2018.02.08910.1016/j.enconman.2018.02.089 Search in Google Scholar

[22] Pacheco K. A., et al. Multi criteria decision analysis for screening carbon dioxide conversion products. Journal of CO2 Utilization 2021:43:101391. https://doi.org/10.1016/j.jcou.2020.10139110.1016/j.jcou.2020.101391 Search in Google Scholar

[23] Chauvy R., et al. Comparison of multi-criteria decision-analysis methods for selecting carbon dioxide utilization products. Sustainable Production and Consumption 2020:24:194–210. https://doi.org/10.1016/j.spc.2020.07.00210.1016/j.spc.2020.07.002 Search in Google Scholar

[24] Styring P., et al. Carbon Capture and Utilisation in the green economy. Using CO2 to manufacture fuel, chemicals and materials. United Kingdom: CO2Chem Publishing, 2012. Search in Google Scholar

[25] Wang R., Peng B., Huang K. The research progress of CO2 sequestration by algal bio-fertilizer in China. Journal of CO2 Utilization 2015:11:67–70. https://doi.org/10.1016/j.jcou.2015.01.00710.1016/j.jcou.2015.01.007 Search in Google Scholar

[26] I-PHYC project [Online]. [Accessed 16.11.2020]. Available: https://i-phyc.com/ Search in Google Scholar

[27] Anto S., et al. Algae as green energy reserve: Technological outlook on biofuel production. Chemosphere 2020:242:125079. https://doi.org/10.1016/j.chemosphere.2019.12507910.1016/j.chemosphere.2019.12507931678847 Search in Google Scholar

[28] Romagnoli F., et al. Novel Stacked Modular Open Raceway Ponds for Microalgae Biomass Cultivation in Biogas Plants: Preliminary Design and Modelling. Environmental and Climate Technologies 2020:24(2):1–19. https://doi.org/10.2478/rtuect-2020-005010.2478/rtuect-2020-0050 Search in Google Scholar

[29] Pastare L., Romagnoli F. Life Cycle Cost Analysis of Biogas Production from Cerathophyllum demersum, Fucus vesiculosus and Ulva intestinalis in Latvian Conditions. Environmental and Climate Technologies 2019:23(2):258– 271. https://doi.org/10.2478/rtuect-2019-006710.2478/rtuect-2019-0067 Search in Google Scholar

[30] Ievina B., Romagnoli F. Potential of Chlorella Species as Feedstock for Bioenergy Production: A Review. Environmental and Climate Technologies 2020:24(2):203–220. https://doi.org/10.2478/rtuect-2020-006710.2478/rtuect-2020-0067 Search in Google Scholar

[31] Drägerwerk AG & Co KGaA. Reliable CO2 monitoring in the beverage industry. Technical Paper. Germany: Drägerwerk AG & Co KGaA. Search in Google Scholar

[32] Nerantzis E., et al. Winemaking process engineering: On line fermentation monitoring - Sensors and equipment. e-Journal of Science & Technology 2007:29–36. Search in Google Scholar

[33] Sanjeev K., Ramesh M. N. Low Oxygen and Inert Gas Processing of Foods. Critical Reviews in Food Science and Nutrition 2007:46(5):423–451. https://doi.org/10.1080/1040839050021567010.1080/1040839050021567016891213 Search in Google Scholar

[34] Ghiat I., et al. CO2 utilisation in agricultural greenhouses: A novel ‘plant to plant’ approach driven by bioenergy with carbon capture systems within the energy, water and food Nexus. Environmental Conversion and Management 2021:228:1136668. https://doi.org/10.1016/j.enconman.2020.11366810.1016/j.enconman.2020.113668 Search in Google Scholar

[35] Zhang X., et al. CFD Modelling of Finned-tube CO2 Gas Cooler for Refrigeration Systems. Energy Procedia 2019:161:275–282. https://doi.org/10.1016/j.egypro.2019.02.09210.1016/j.egypro.2019.02.092 Search in Google Scholar

[36] Zhang Z., et al. Simulation and techno-economic assessment of bio-methanol production from pine biomass, biochar and pyrolysis oil. Sustainable Energy Technologies and Assessments 2021:44:101002. https://doi.org/10.1016/j.seta.2021.10100210.1016/j.seta.2021.101002 Search in Google Scholar

eISSN:
2255-8837
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Biologie, andere