Uneingeschränkter Zugang

An iterative algorithm for random upper bound kinematical analysis

   | 10. Nov. 2021

Zitieren

Au SK, Beck L. Estimation of small failure probabilities in high dimensions by subset simulation. Probabilistic Engineering Mechanics; 2001; 16:263–277. AuSK BeckL Estimation of small failure probabilities in high dimensions by subset simulation Probabilistic Engineering Mechanics 2001 16 263 277 10.1016/S0266-8920(01)00019-4 Search in Google Scholar

Bagińska I, Kawa M, Janecki W. Estimation of spatial variability of lignite mine dumping ground soil properties using CPTu results. Studia Geotechnica et Mechanica; 2016; 38(1), 3–13. BagińskaI KawaM JaneckiW Estimation of spatial variability of lignite mine dumping ground soil properties using CPTu results Studia Geotechnica et Mechanica 2016 38 1 3 13 10.1515/sgem-2016-0001 Search in Google Scholar

Bagińska I, Kawa M, Łydżba D, Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu test results. Engineering Geology 276, 105759 BagińskaI KawaM ŁydżbaD Identification of soil types and their arrangement in overburden heaps using the deconvolution approach and CPTu test results Engineering Geology 276 105759 10.1016/j.enggeo.2020.105759 Search in Google Scholar

Ching J, Wu TJ, Stuedlein AW, Bong T. Estimating horizontal scale of fluctuation with limited CPT soundings. Geoscience Frontiers; 2018; Vol. 9, 6, 1597–1608. https://doi.org/10.1016/j.gsf.2017.11.008 ChingJ WuTJ StuedleinAW BongT Estimating horizontal scale of fluctuation with limited CPT soundings Geoscience Frontiers 2018 9 6 1597 1608 https://doi.org/10.1016/j.gsf.2017.11.008 10.1016/j.gsf.2017.11.008 Search in Google Scholar

Chwała M. (2019). Undrained bearing capacity of spatially random soil for rectangular footings. Soils and Foundations, Volume 59, Issue 5, 1508–1521. https://doi.org/10.1016/j.sandf.2019.07.005 ChwałaM. 2019 Undrained bearing capacity of spatially random soil for rectangular footings Soils and Foundations 59 5 1508 1521 https://doi.org/10.1016/j.sandf.2019.07.005 10.1016/j.sandf.2019.07.005 Search in Google Scholar

Chwała M, Puła W (2020). Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters. PLoS ONE 15(4): e0231992. https://doi.org/10.1371/journal.pone.0231992 ChwałaM PułaW 2020 Evaluation of shallow foundation bearing capacity in the case of a two-layered soil and spatial variability in soil strength parameters PLoS ONE 15 4 e0231992 https://doi.org/10.1371/journal.pone.0231992 10.1371/journal.pone.0231992719014832348332 Search in Google Scholar

Chwała M., (2020). On determining the undrained bearing capacity coefficients of variation for foundations embedded on spatially variable soil. Studia Geotechnica et Mechanica, 2020, 42(2); 125–136. 10.2478/sgem-2019-0037 ChwałaM. 2020 On determining the undrained bearing capacity coefficients of variation for foundations embedded on spatially variable soil Studia Geotechnica et Mechanica 2020 42 2 125 136 10.2478/sgem-2019-0037 Open DOISearch in Google Scholar

Chwała M., (2020). Soil sounding location optimisation for spatially variable soil. Geotechnique Letters 10, 1–10. https://doi.org/10.1680/jgele.20.00012 ChwałaM. 2020 Soil sounding location optimisation for spatially variable soil Geotechnique Letters 10 1 10 https://doi.org/10.1680/jgele.20.00012 10.1680/jgele.20.00012 Search in Google Scholar

Chwała M., (2021). Optimal placement of two soil soundings for rectangular footings. Journal of Rock Mechanics and Geotechnical Engineering, Volume 13, Issue 3, 603–611 https://doi.org/10.1016/j.jrmge.2021.01.007 ChwałaM. 2021 Optimal placement of two soil soundings for rectangular footings Journal of Rock Mechanics and Geotechnical Engineering 13 3 603 611 https://doi.org/10.1016/j.jrmge.2021.01.007 10.1016/j.jrmge.2021.01.007 Search in Google Scholar

Chwała M, Kawa M, (2021). Random failure mechanism method for working platform bearing capacity assessment with a linear trend in undrained shear strength. Journal of Rock Mechanics and Geotechnical Engineering. https://doi.org/10.1016/j.jrmge.2021.06.004 ChwałaM KawaM 2021 Random failure mechanism method for working platform bearing capacity assessment with a linear trend in undrained shear strength Journal of Rock Mechanics and Geotechnical Engineering https://doi.org/10.1016/j.jrmge.2021.06.004 10.1016/j.jrmge.2021.06.004 Search in Google Scholar

Fenton GA, Griffiths DV, (2003). Bearing-capacity prediction of spatially random c ϕ soils. Canadian geotechnical journal, 40(1), 54–65. https://doi.org/10.1139/t02-086 FentonGA GriffithsDV 2003 Bearing-capacity prediction of spatially random c ϕ soils Canadian geotechnical journal 40 1 54 65 https://doi.org/10.1139/t02-086 10.1139/t02-086 Search in Google Scholar

Fenton GA, Griffiths DV. Risk assessment in geotechnical engineering. Wiley; 2008. FentonGA GriffithsDV Risk assessment in geotechnical engineering Wiley 2008 10.1002/9780470284704 Search in Google Scholar

Huang J, Lyamin AV, Griffiths DV, Sloan SW, Krabbenhoft K, Fenton GA. (2013). Undrained bearing capacity of spatially random clays by finite elements and limit analysis. Proceedings of the 18th ICSMGE; Paris 2013;731–734. HuangJ LyaminAV GriffithsDV SloanSW KrabbenhoftK FentonGA 2013 Undrained bearing capacity of spatially random clays by finite elements and limit analysis Proceedings of the 18th ICSMGE Paris 2013 731 734 Search in Google Scholar

Ferreira V, Panagopulos T, Andrade R, Guerrero C, Loures L. (2015). Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed. Soild Earth, 6, 383–392. FerreiraV PanagopulosT AndradeR GuerreroC LouresL 2015 Spatial variability of soil properties and soil erodibility in the Alqueva reservoir watershed Soild Earth 6 383 392 10.5194/se-6-383-2015 Search in Google Scholar

Ghanem R, Brzakała W, (1996). Stochastic Finite-Element Analysis of Soil Layers with Random Interface. Journal of Engineering Mechanics, Vol. 122, Issue 4 (April 1996), https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(361) GhanemR BrzakałaW 1996 Stochastic Finite-Element Analysis of Soil Layers with Random Interface Journal of Engineering Mechanics 122 4 April 1996 https://doi.org/10.1061/(ASCE)0733-9399(1996)122:4(361) 10.1061/(ASCE)0733-9399(1996)122:4(361) Search in Google Scholar

Griffiths DV, Fenton GA, Manoharan N, (2002). Bearing Capacity of Rough Rigid Strip Footing on Cohesive Soil: Probabilistic Study. Journal of Geotechnical and Geoenvironmental Engineering, 2002, 128(9): 743–755. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(743) GriffithsDV FentonGA ManoharanN 2002 Bearing Capacity of Rough Rigid Strip Footing on Cohesive Soil: Probabilistic Study Journal of Geotechnical and Geoenvironmental Engineering 2002 128 9 743 755 https://doi.org/10.1061/(ASCE)1090-0241(2002)128:9(743) 10.1061/(ASCE)1090-0241(2002)128:9(743) Search in Google Scholar

Griffiths DV, Fenton GA, (2004). Probabilistic slope stability analysis by finite elements Journal of Geotechnical and Geoenvironmental Engineering, 130 (5) (2004), pp. 507–518, 10.1061/(ASCE)1090-0241(2004)130:5(507) GriffithsDV FentonGA 2004 Probabilistic slope stability analysis by finite elements Journal of Geotechnical and Geoenvironmental Engineering 130 5 2004 507 518 10.1061/(ASCE)1090-0241(2004)130:5(507) Open DOISearch in Google Scholar

Halder K, Chakraborty D, (2019). Probabilistic bearing capacity of strip footing on reinforced soil slope. Computers and Geotechnics, 2019, 116: 103213. https://doi.org/10.1016/j.compgeo.2019.103213 HalderK ChakrabortyD 2019 Probabilistic bearing capacity of strip footing on reinforced soil slope Computers and Geotechnics 2019 116 103213. https://doi.org/10.1016/j.compgeo.2019.103213 10.1016/j.compgeo.2019.103213 Search in Google Scholar

Halder K, Chakraborty D, (2020). Influence of soil spatial variability on the response of strip footing on geocell-reinforced slope. Computers and Geotechnics, Volume 122, 2020, 103533, https://doi.org/10.1016/j.compgeo.2020.103533. HalderK ChakrabortyD 2020 Influence of soil spatial variability on the response of strip footing on geocell-reinforced slope Computers and Geotechnics 122 2020 103533, https://doi.org/10.1016/j.compgeo.2020.103533. 10.1016/j.compgeo.2020.103533 Search in Google Scholar

Horn RA, Johnson CR. Matrix Analysis. Cambridge University Press 1985. HornRA JohnsonCR Matrix Analysis Cambridge University Press 1985 10.1017/CBO9780511810817 Search in Google Scholar

Juan C. Viviescas, Álvaro J. Mattos & Juan P. Osorio (2020) Uncertainty quantification in the bearing capacity estimation for shallow foundations in sandy soils, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, DOI: 10.1080/17499518.2020.1753782 ViviescasJuan C. MattosÁlvaro J. OsorioJuan P. 2020 Uncertainty quantification in the bearing capacity estimation for shallow foundations in sandy soils Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards 10.1080/17499518.2020.1753782 Open DOISearch in Google Scholar

Kasama K, Whittle AJ, (2011). Bearing Capacity of Spatially Random Cohesive Soil Using Numerical Limit Analyses. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 989–996. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000531 KasamaK WhittleAJ 2011 Bearing Capacity of Spatially Random Cohesive Soil Using Numerical Limit Analyses Journal of Geotechnical and Geoenvironmental Engineering 2011 137 11 989 996 https://doi.org/10.1061/(ASCE)GT.1943-5606.0000531 10.1061/(ASCE)GT.1943-5606.0000531 Search in Google Scholar

Kawa M, Bagińska I, Wyjadłowski M. Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results. Archives of Civil and Mechanical Engineering; 2019; 19(2):598–613. KawaM BagińskaI WyjadłowskiM Reliability analysis of sheet pile wall in spatially variable soil including CPTu test results Archives of Civil and Mechanical Engineering 2019 19 2 598 613 10.1016/j.acme.2018.10.007 Search in Google Scholar

Kawa M, Puła W. (2020). 3D bearing capacity probabilistic analyses of footings on spatially variable c–ϕ soil. Acta Geotechnica (2020) 15:1453–1466. https://doi.org/10.1007/s11440-019-00853-3 KawaM PułaW 2020 3D bearing capacity probabilistic analyses of footings on spatially variable c–ϕ soil Acta Geotechnica 2020 15 1453 1466 https://doi.org/10.1007/s11440-019-00853-3 10.1007/s11440-019-00853-3 Search in Google Scholar

Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by Simulated Annealing. Science; 1983; 220, 671–680. KirkpatrickS GelattCD VecchiMP Optimization by Simulated Annealing Science 1983 220 671 680 10.1126/science.220.4598.671 Search in Google Scholar

Kirkpatrick S. Optimization by Simulated Annealing: Quantitative Studies. Journal of Statistical Physics; 1984; Vol. 34, Nos. 5/6. KirkpatrickS Optimization by Simulated Annealing: Quantitative Studies Journal of Statistical Physics 1984 34 5/6 10.1007/BF01009452 Search in Google Scholar

Li Y, Fenton GA, Hicks MA, Xu N, (2021). Probabilistic Bearing Capacity Prediction of Square Footings on 3D Spatially Varying Cohesive Soils. Journal of Geotechnical and Geoenvironmental Engineering 147 (6), 04021035 LiY FentonGA HicksMA XuN 2021 Probabilistic Bearing Capacity Prediction of Square Footings on 3D Spatially Varying Cohesive Soils Journal of Geotechnical and Geoenvironmental Engineering 147 6 04021035 10.1061/(ASCE)GT.1943-5606.0002538 Search in Google Scholar

Li J, Wu C, Luo W, Sun L, White DJ, (2021). An extended Prandtl solution for analytical modelling of the bearing capacity of a shallow foundation on a spatially variable undrained clay. Géotechnique, https://doi.org/10.1680/jgeot.20.P.118 LiJ WuC LuoW SunL WhiteDJ 2021 An extended Prandtl solution for analytical modelling of the bearing capacity of a shallow foundation on a spatially variable undrained clay Géotechnique https://doi.org/10.1680/jgeot.20.P.118 10.1680/jgeot.20.P.118 Search in Google Scholar

Phoon KK, Kulhawy FH, (1999). Characterization of geotechnical variability. Canadian Geotechnical Journal, 36(4), 612–624. https://doi.org/10.1139/t99-038 PhoonKK KulhawyFH 1999 Characterization of geotechnical variability Canadian Geotechnical Journal 36 4 612 624 https://doi.org/10.1139/t99-038 10.1139/t99-038 Search in Google Scholar

Pieczyńska-Kozłowska JM, Puła W, Vessia G. A collection of fluctuation scale values and autocorrelation functions of fine deposits in Emilia Romagna plain (Italy) Geo-Risk 2017 in ASCE Geotechnical Special Publication, 284 (2017), pp. 290–299 Pieczyńska-KozłowskaJM PułaW VessiaG A collection of fluctuation scale values and autocorrelation functions of fine deposits in Emilia Romagna plain (Italy) Geo-Risk 2017 in ASCE Geotechnical Special Publication 284 2017 290 299 10.1061/9780784480717.027 Search in Google Scholar

Pieczyńska-Kozłowska JM, Puła W, Chwała M. Search for the worst-case correlation length in the bearing capacity probability of failure analyses. Geo-Risk 2017 in ASCE Geotechnical Special Publication, GSP 283, 534–544. Pieczyńska-KozłowskaJM PułaW ChwałaM Search for the worst-case correlation length in the bearing capacity probability of failure analyses Geo-Risk 2017 in ASCE Geotechnical Special Publication, GSP 283 534 544 Search in Google Scholar

Pramanik, R., Baidya, D.K. & Dhang, N, (2020). Reliability analysis for bearing capacity of surface strip footing using fuzzy finite element method. Geomechanics and Geoengineering: An International Journal, 2020, 15(1): 29–41. https://doi.org/10.1080/17486025.2019.1601268 PramanikR. BaidyaD.K. DhangN 2020 Reliability analysis for bearing capacity of surface strip footing using fuzzy finite element method Geomechanics and Geoengineering: An International Journal 2020 15 1 29 41 https://doi.org/10.1080/17486025.2019.1601268 10.1080/17486025.2019.1601268 Search in Google Scholar

Pramanik, R., Baidya, D.K. & Dhang, N, (2021). Reliability assessment of three-dimensional bearing capacity of shallow foundation using fuzzy set theory. Front. Struct. Civ. Eng. (2021). https://doi.org/10.1007/s11709-021-0698-8 PramanikR. BaidyaD.K. DhangN 2021 Reliability assessment of three-dimensional bearing capacity of shallow foundation using fuzzy set theory Front. Struct. Civ. Eng. 2021 https://doi.org/10.1007/s11709-021-0698-8 10.1007/s11709-021-0698-8 Search in Google Scholar

Puła W. Applications of structural reliability theory to foundations safety evaluation. Wrocław 2004; Wroclaw University of Technology Press [in Polish]. PułaW Applications of structural reliability theory to foundations safety evaluation Wrocław 2004 Wroclaw University of Technology Press [in Polish]. Search in Google Scholar

Puła W. On some aspects of reliability computations in bearing capacity of shallow foundations. In: Griffiths DV, Fenton Gordon A, editors. Puła in: probabilistic methods in geotechnical engineering. CISM courses and lectures, Wien, New York: Springer; 2007; No. 491, 127–45. PułaW On some aspects of reliability computations in bearing capacity of shallow foundations In: GriffithsDV FentonGordon A editors. Puła in: probabilistic methods in geotechnical engineering CISM courses and lectures, Wien, New York Springer 2007 491 127 45 10.1007/978-3-211-73366-0_5 Search in Google Scholar

Puła W, Chwała M, On spatial averaging along random slip lines in the reliability computations of shallow strip foundations. Computers and Geotechnics; 2015; 68, 128–136. PułaW ChwałaM On spatial averaging along random slip lines in the reliability computations of shallow strip foundations Computers and Geotechnics 2015 68 128 136 10.1016/j.compgeo.2015.04.001 Search in Google Scholar

Puła W, Chwała M. Random bearing capacity evaluation of shallow foundations for asymmetrical failure mechanisms with spatial averaging and inclusion of soil self-weight. Computers and Geotechnics; 2018; 101, 176–195. PułaW ChwałaM Random bearing capacity evaluation of shallow foundations for asymmetrical failure mechanisms with spatial averaging and inclusion of soil self-weight Computers and Geotechnics 2018 101 176 195 10.1016/j.compgeo.2018.05.002 Search in Google Scholar

Rainer J, Szabowicz H, (2020). Analysis of underground stratification based on CPTu profiles using high-pass spatial filter. Studia Geotechnica et Mechanica. 2020, s. 1–11. RainerJ SzabowiczH 2020 Analysis of underground stratification based on CPTu profiles using high-pass spatial filter Studia Geotechnica et Mechanica 2020 1 11 10.2478/sgem-2020-0002 Search in Google Scholar

Simoes JT, Neves LC, Antao AN, Guerra NMC. Probabilistic analysis of bearing capacity of shallow foundations using three-dimensional limit analyses. International Journal of Computational Methods; 2014; Vol. 11, No. 02, 1342008-1-20. SimoesJT NevesLC AntaoAN GuerraNMC Probabilistic analysis of bearing capacity of shallow foundations using three-dimensional limit analyses International Journal of Computational Methods 2014 11 02 1342008-1-20. 10.1142/S0219876213420085 Search in Google Scholar

Shield RT, Drucker DC. The application of limit analysis to punch-indentation problems. Journal of Applied Mechanics; 1953; 20, 453–460. ShieldRT DruckerDC The application of limit analysis to punch-indentation problems Journal of Applied Mechanics 1953 20 453 460 10.1115/1.4010747 Search in Google Scholar

Srivastava AGL, Sivakumar BGL, Haldar S, (2010). Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis. Engineering Geology, 2010, 110(3–4): 93–101. https://doi.org/10.1016/j.enggeo.2009.11.006 SrivastavaAGL SivakumarBGL HaldarS 2010 Influence of spatial variability of permeability property on steady state seepage flow and slope stability analysis Engineering Geology 2010 110 3–4 93 101 https://doi.org/10.1016/j.enggeo.2009.11.006 10.1016/j.enggeo.2009.11.006 Search in Google Scholar

Stuedlein AW, Kramer SL, Arduino P, Holtz RD, (2012). Geotechnical Characterization and Random Field Modeling of Desiccated Clay. Journal of Geotechnical and Geoenvironmental Engineering, 138(11), 1301–1313. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723 StuedleinAW KramerSL ArduinoP HoltzRD 2012 Geotechnical Characterization and Random Field Modeling of Desiccated Clay Journal of Geotechnical and Geoenvironmental Engineering 138 11 1301 1313 https://doi.org/10.1061/(ASCE)GT.1943-5606.0000723 10.1061/(ASCE)GT.1943-5606.0000723 Search in Google Scholar

The MathWorks. MATLAB R2017b; 2017; Natick. The MathWorks MATLAB R2017b; 2017 Natick Search in Google Scholar

Vanmarcke E.H. Probabilistic modelling of soil profiles. Journal of the Geotechnical Engineering Division; 1977; Vol. 103, 11, 1227–46. VanmarckeE.H. Probabilistic modelling of soil profiles Journal of the Geotechnical Engineering Division 1977 103 11 1227 46 10.1061/AJGEB6.0000517 Search in Google Scholar

Vanmarcke EH. Reliability of earth slopes. Journal of the Geotechnical Engineering Division; 1977; Vol. 103, 11, 1247–65. VanmarckeEH Reliability of earth slopes Journal of the Geotechnical Engineering Division 1977 103 11 1247 65 10.1061/AJGEB6.0000518 Search in Google Scholar

Vanmarcke E.H. Random fields – analysis and synthesis. Cambridge 1983: MIT Press. VanmarckeE.H. Random fields – analysis and synthesis Cambridge 1983 MIT Press Search in Google Scholar

Viviescas J.C, Griffiths DV, Osorio JP, (2021). Geological influence on the spatial variability of soils. International Journal of Geotechnical Engineering, 00(00), 1–9. https://doi.org/10.1080/19386362.2021.1888509 ViviescasJ.C GriffithsDV OsorioJP 2021 Geological influence on the spatial variability of soils International Journal of Geotechnical Engineering 00 00 1 9 https://doi.org/10.1080/19386362.2021.1888509 10.1080/19386362.2021.1888509 Search in Google Scholar

Zhu D, Griffiths DV, Huang J, Fenton GA, (2017). Probabilistic stability analyses of undrained slopes with linearly increasing mean strength. Géotechnique, 2017, 67(8): 733–746. https://doi.org/10.1680/jgeot.16.P.223 ZhuD GriffithsDV HuangJ FentonGA 2017 Probabilistic stability analyses of undrained slopes with linearly increasing mean strength Géotechnique 2017 67 8 733 746 https://doi.org/10.1680/jgeot.16.P.223 10.1680/jgeot.16.P.223 Search in Google Scholar

Żyliński K, Korzec A, Winkelmann K, Górski J., (2020). Random Field Model of Foundations at the Example of Continuous Footing. AIP Conf. Proc. 2239, 020052-1–020052-11; https://doi.org/10.1063/5.0007811 ŻylińskiK KorzecA WinkelmannK GórskiJ 2020 Random Field Model of Foundations at the Example of Continuous Footing AIP Conf. Proc. 2239 020052-1 020052-11 https://doi.org/10.1063/5.0007811 10.1063/5.0007811 Search in Google Scholar

eISSN:
2083-831X
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
4 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Geowissenschaften, andere, Materialwissenschaft, Verbundwerkstoffe, Poröse Materialien, Physik, Mechanik und Fluiddynamik