Cite

Smith A.D., Wilks A.: Extracellular heme uptake and the challenges of bacterial cell membranes. Curr. Top. Membr. 69, 359–392 (2012) Smith A.D. Wilks A. Extracellular heme uptake and the challenges of bacterial cell membranes Curr. Top. Membr. 69 359 392 201210.1016/B978-0-12-394390-3.00013-6373194823046657 Search in Google Scholar

Guan L., Liu Q., Li C., Zhang Y.: Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis. BMC Biotechnol. 13, 25 (2013) Guan L. Liu Q. Li C. Zhang Y. Development of a Fur-dependent and tightly regulated expression system in Escherichia coli for toxic protein synthesis BMC Biotechnol. 13 25 201310.1186/1472-6750-13-25362169123510048 Search in Google Scholar

Weinberg E.D.: The Lactobacilli anomaly: total iron abstinence. Perspect. Biol. Med. 40, 1–6 (1997) Weinberg E.D. The Lactobacilli anomaly: total iron abstinence Perspect. Biol. Med. 40 1 6 199710.1353/pbm.1997.00729269745 Search in Google Scholar

Posey J.E., Gherardini F.C.: Lack of a role for iron in the Lyme disease pathogen. Science, 288, 1651–1653 (2000) Posey J.E. Gherardini F.C. Lack of a role for iron in the Lyme disease pathogen Science 288 1651 1653 200010.1126/science.288.5471.165110834845 Search in Google Scholar

Andrews S.C., Robinson A.K., Rodriguez-Quinones F.: Bacterial iron homeostasis. FEMS Microbiol. Rev. 27, 215–237 (2003) Andrews S.C. Robinson A.K. Rodriguez-Quinones F. Bacterial iron homeostasis FEMS Microbiol. Rev. 27 215 237 200310.1016/S0168-6445(03)00055-X12829269 Search in Google Scholar

Cassat J.E., Skaar E.P.: Iron in infection and immunity. Cell Host Microbe, 13, 509–519 (2013) Cassat J.E. Skaar E.P. Iron in infection and immunity Cell Host Microbe 13 509 519 201310.1016/j.chom.2013.04.010367688823684303 Search in Google Scholar

Gozzelino R., Soares M.P.: Coupling heme and iron metabolism via ferritin H chain. Antioxid. Redox Signal. 20, 1754–1769 (2014) Gozzelino R. Soares M.P. Coupling heme and iron metabolism via ferritin H chain Antioxid. Redox Signal. 20 1754 1769 201410.1089/ars.2013.5666396179824124891 Search in Google Scholar

Anzaldi L.L., Skaar E.P.: Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect. Immun. 78, 4977–4989 (2010) Anzaldi L.L. Skaar E.P. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens Infect. Immun. 78 4977 4989 201010.1128/IAI.00613-10298132920679437 Search in Google Scholar

Hamza I., Dailey H.A.: One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans. Biochim. Biophys. Acta, 9, 1617–1632 (2012) Hamza I. Dailey H.A. One ring to rule them all: trafficking of heme and heme synthesis intermediates in the metazoans Biochim. Biophys. Acta 9 1617 1632 201210.1016/j.bbamcr.2012.04.009341287422575458 Search in Google Scholar

Runyen-Janecky L.J.: Role and regulation of heme iron acquisition in Gram-negative pathogens. Front. Cell. Infect. Microbiol. 3, 55 DOI: 10.3389/fcimb.2013.00055 (2013) Runyen-Janecky L.J. Role and regulation of heme iron acquisition in Gram-negative pathogens Front. Cell. Infect. Microbiol. 3 55 DOI: 10.3389/fcimb.2013.00055 2013379235524116354 Open DOISearch in Google Scholar

Wilks A., Ikeda-Saito M.: Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin. Acc. Chem. Res. 47, 2291–2298 (2014) Wilks A. Ikeda-Saito M. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin Acc. Chem. Res. 47 2291 2298 201410.1021/ar500028n413917724873177 Search in Google Scholar

Bracken C.S., Baer M.T., Abdur-Rashid A., Helms W., Stojiljkovic I.: Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function. J. Bacteriol. 181, 6063–6072 (1999) Bracken C.S. Baer M.T. Abdur-Rashid A. Helms W. Stojiljkovic I. Use of heme-protein complexes by the Yersinia enterocolitica HemR receptor: histidine residues are essential for receptor function J. Bacteriol. 181 6063 6072 199910.1128/JB.181.19.6063-6072.199910363410498719 Search in Google Scholar

Stojiljkovic I., Hantke K.: Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in Gram-negative bacteria. EMBO J. 11, 4359–4367 (1992) Stojiljkovic I. Hantke K. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in Gram-negative bacteria EMBO J. 11 4359 4367 199210.1002/j.1460-2075.1992.tb05535.x5570091425573 Search in Google Scholar

Jaworska K., Nieckarz M., Ludwiczak M., Raczkowska A., Brzostek K.: OmpR-mediated transcriptional regulation and function of two heme receptor proteins of Yersinia enterocolitica bio-Serotype 2/O:9. Front. Cell. Infect. Microbiol. 8, 333, DOI: 10.3389/fcimb.2018.00333 (2018) Jaworska K. Nieckarz M. Ludwiczak M. Raczkowska A. Brzostek K. OmpR-mediated transcriptional regulation and function of two heme receptor proteins of Yersinia enterocolitica bio-Serotype 2/O:9 Front. Cell. Infect. Microbiol. 8 333 DOI: 10.3389/fcimb.2018.00333 2018615855730294593 Open DOISearch in Google Scholar

Carrizo-Chávez M.A., Cruz-Castañeda A., Olivares-Trejo J.J.: The frpB1 gene of Helicobacter pylori is regulated by iron and encodes a membrane protein capable of binding haem and haemoglobin. FEBS Lett. 586, 875–879 (2012) Carrizo-Chávez M.A. Cruz-Castañeda A. Olivares-Trejo J.J. The frpB1 gene of Helicobacter pylori is regulated by iron and encodes a membrane protein capable of binding haem and haemoglobin FEBS Lett. 586 875 879 201210.1016/j.febslet.2012.02.01522449974 Search in Google Scholar

Ridley K.A., Rock J.D., Li Y., Ketley J.M.: Heme Utilization in Campylobacter jejuni. J. Bacteriol. 188, 7862–7875 (2006) Ridley K.A. Rock J.D. Li Y. Ketley J.M. Heme Utilization in Campylobacter jejuni J. Bacteriol. 188 7862 7875 200610.1128/JB.00994-06163629916980451 Search in Google Scholar

Lewis L.A., Gray E., Wang Y.P., Roe B.A., Dyer D.W.: Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis. Mol. Microbiol. 23, 737–749 (1997) Lewis L.A. Gray E. Wang Y.P. Roe B.A. Dyer D.W. Molecular characterization of hpuAB, the haemoglobin-haptoglobin-utilization operon of Neisseria meningitidis Mol. Microbiol. 23 737 749 199710.1046/j.1365-2958.1997.2501619.x9157245 Search in Google Scholar

Rohde K.H., Gillaspy A.F., Hatfield M.D., Lewis L.A., Dyer D.W.: Interactions of haemoglobin with the Neisseria meningitidis receptor HpuAB: the role of TonB and an intact proton motive force. Mol. Microbiol. 43, 335–354 (2002) Rohde K.H. Gillaspy A.F. Hatfield M.D. Lewis L.A. Dyer D.W. Interactions of haemoglobin with the Neisseria meningitidis receptor HpuAB: the role of TonB and an intact proton motive force Mol. Microbiol 43 335 354 200210.1046/j.1365-2958.2002.02745.x11985713 Search in Google Scholar

Dent A.T., Mouriño S., Huang W., Wilks A.: Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing. J. Biol. Chem. 294, 2771–2785 (2019) Dent A.T. Mouriño S. Huang W. Wilks A. Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing J. Biol. Chem. 294 2771 2785 201910.1074/jbc.RA118.006185639359130593511 Search in Google Scholar

Kumar R., Qi Y., Matsumura H., Lovell S., Yao H., Battaile K.P., Im W., Moënne-Loccoz P., Rivera M.: Replacing arginine 33 for alanine in the hemophore HasA from Pseudomonas aeruginosa causes closure of the H32 loop in the apo-protein. Biochemistry, 55, 2622–2631 (2016) Kumar R. Qi Y. Matsumura H. Lovell S. Yao H. Battaile K.P. Im W. Moënne-Loccoz P. Rivera M. Replacing arginine 33 for alanine in the hemophore HasA from Pseudomonas aeruginosa causes closure of the H32 loop in the apo-protein Biochemistry 55 2622 2631 201610.1021/acs.biochem.6b00239555010027074415 Search in Google Scholar

Yukl E.T., Jepkoror G., Alontaga A.Y., Pautsch L., Rodriguez J.C., Rivera M., Moënne-Loccoz P.: Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry, 49, 6646–6654 (2010) Yukl E.T. Jepkoror G. Alontaga A.Y. Pautsch L. Rodriguez J.C. Rivera M. Moënne-Loccoz P. Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa Biochemistry 49 6646 6654 201010.1021/bi100692f291480020586423 Search in Google Scholar

Izadi N., Henry Y., Haladjian J., Goldberg M.E., Wandersman C., Delepierre M., Lecroisey A.: Purification and characterization of an extracellular heme-binding protein, HasA, Involved in Heme Iron Acquisition. Biochemistry, 23, 7050–7057 (1997) Izadi N. Henry Y. Haladjian J. Goldberg M.E. Wandersman C. Delepierre M. Lecroisey A. Purification and characterization of an extracellular heme-binding protein, HasA, Involved in Heme Iron Acquisition Biochemistry 23 7050 7057 199710.1021/bi962577s9188703 Search in Google Scholar

Jepkorir G., Rodriguez J.C., Rui H., Im W., Lovell S., Battaile K.P., Alontaga A.Y., Yukl E.T., Moënne-Loccoz P., Rivera M.: Structural, NMR spectroscopic, and computational investigation of hemin loading in the hemophore HasAp from Pseudomonas aeruginosa. J. Am. Chem. Soc. 132, 9857–9872 (2010) Jepkorir G. Rodriguez J.C. Rui H. Im W. Lovell S. Battaile K.P. Alontaga A.Y. Yukl E.T. Moënne-Loccoz P. Rivera M. Structural, NMR spectroscopic, and computational investigation of hemin loading in the hemophore HasAp from Pseudomonas aeruginosa J. Am. Chem. Soc. 132 9857 9872 201010.1021/ja103498z294840720572666 Search in Google Scholar

Izadi-Pruneyre N., Huché F., Lukat-Rodgers G.S., Lecroisey A., Gilli R., Rodgers K., Wandersman C., Deleplaire P.: The heme transfer from the soluble HasA hemophore to its membrane-bound receptor HasR is driven by protein-protein interaction from a high to a lower affinity binding site. J. Biol. Chem. 281, 25541–25550 (2006) Izadi-Pruneyre N. Huché F. Lukat-Rodgers G.S. Lecroisey A. Gilli R. Rodgers K. Wandersman C. Deleplaire P. The heme transfer from the soluble HasA hemophore to its membrane-bound receptor HasR is driven by protein-protein interaction from a high to a lower affinity binding site J. Biol. Chem. 281 25541 25550 200610.1074/jbc.M60369820016774915 Search in Google Scholar

Celia H., Noinaj N., Zakharov S.D., Bordignon E., Botos I., Santamaria M., Barnard T.J., Cramer W.A., Lloubes R., Buchanan S.: Structural insight into the role of the Ton complex in energy transduction. Nature, 538, 60–65 (2016) Celia H. Noinaj N. Zakharov S.D. Bordignon E. Botos I. Santamaria M. Barnard T.J. Cramer W.A. Lloubes R. Buchanan S. Structural insight into the role of the Ton complex in energy transduction Nature 538 60 65 201610.1038/nature19757516166727654919 Search in Google Scholar

Shultis D.D., Purdy M.D., Banchs C.N., Wiener M.C.: Outer membrane active transport: structure of the BtuB:TonB complex. Science, 312, 1396–1399 (2006) Shultis D.D. Purdy M.D. Banchs C.N. Wiener M.C. Outer membrane active transport: structure of the BtuB:TonB complex Science 312 1396 1399 200610.1126/science.112769416741124 Search in Google Scholar

Santander J., Golden G., Wanda S., Curtiss R.: Fur-regulated iron uptake system of Edwardsiella ictaluri and its influence on pathogenesis and immunogenicity in the Catfish Host. Infect. Immun. 80, 2689–2703 (2012) Santander J. Golden G. Wanda S. Curtiss R. Fur-regulated iron uptake system of Edwardsiella ictaluri and its influence on pathogenesis and immunogenicity in the Catfish Host Infect. Immun. 80 2689 2703 201210.1128/IAI.00013-12343458222615248 Search in Google Scholar

Thompson J.M., Jones H.A., Perry R.D.: Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization. Infect. Immun. 67, 3879–3892 (1999) Thompson J.M. Jones H.A. Perry R.D. Molecular characterization of the hemin uptake locus (hmu) from Yersinia pestis and analysis of hmu mutants for hemin and hemoprotein utilization Infect. Immun 67 3879 3892 199910.1128/IAI.67.8.3879-3892.19999666810417152 Search in Google Scholar

Schwiesow L., Mettert E., Wei Y., Miller H.K., Herrera N.G., Balderas D., Kiley P.J., Auerbuch V.: Control of hmu heme uptake genes in Yersinia pseudotuberculosis in response to iron sources. Front. Cell. Infect. Microbiol. 8, 47, DOI: 10.3389/ fcimb.2018.00047 (2018) Schwiesow L. Mettert E. Wei Y. Miller H.K. Herrera N.G. Balderas D. Kiley P.J. Auerbuch V. Control of hmu heme uptake genes in Yersinia pseudotuberculosis in response to iron sources Front. Cell. Infect. Microbiol. 8 47 DOI: 10.3389/ fcimb.2018.00047 2018 Open DOISearch in Google Scholar

Mattle D., Zeltina A., Woo J., Goetz B.A. Locher K.P.: Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis. J. Mol. Biol. 404, 220–231 (2010) Mattle D. Zeltina A. Woo J. Goetz B.A. Locher K.P. Two stacked heme molecules in the binding pocket of the periplasmic heme-binding protein HmuT from Yersinia pestis J. Mol. Biol. 404 220 231 201010.1016/j.jmb.2010.09.00520888343 Search in Google Scholar

Farhana A., Saini V., Kumar A., Lancaster J.R., Steyn A.J.C.: Environmental heme-based sensor proteins: implications for understanding bacterial pathogenesis. Antiox. Redox Signal. 17, 1232–1245 (2012) Farhana A. Saini V. Kumar A. Lancaster J.R. Steyn A.J.C. Environmental heme-based sensor proteins: implications for understanding bacterial pathogenesis Antiox. Redox Signal. 17 1232 1245 201210.1089/ars.2012.4613343047622494151 Search in Google Scholar

Van Vliet A.H.M., Stoof J., i wsp.: The role of the ferric uptake regulator (Fur) in regulation of Helicobacter pylori iron uptake. Helicobacter, 7, 237–244 (2002) Van Vliet A.H.M. Stoof J. i wsp The role of the ferric uptake regulator (Fur) in regulation of Helicobacter pylori iron uptake Helicobacter 7 237 244 200210.1046/j.1523-5378.2002.00088.x12165031 Search in Google Scholar

Butcher J., Sarvan S., Brunzelle J.S., Couture J., Stinzi A.: Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation. PNAS, 109, 10047–10052 (2012) Butcher J. Sarvan S. Brunzelle J.S. Couture J. Stinzi A. Structure and regulon of Campylobacter jejuni ferric uptake regulator Fur define apo-Fur regulation PNAS 109 10047 10052 201210.1073/pnas.1118321109338249122665794 Search in Google Scholar

Sun F., Gao H., Zhang Y., Wang L., Fang N., Tan Y., Guo Z., Xia P., Zhou D., Yang R.: Fur is a repressor of biofilm formation in Yersinia pestis. PLoS One, 7, e52392, DOI: 10.1371/journal.pone.0052392 (2012) Sun F. Gao H. Zhang Y. Wang L. Fang N. Tan Y. Guo Z. Xia P. Zhou D. Yang R. Fur is a repressor of biofilm formation in Yersinia pestis PLoS One 7 e52392 DOI: 10.1371/journal.pone.0052392 2012352868723285021 Open DOISearch in Google Scholar

Visca P., Imperi F.: An essential transcriptional regulator: the case of Pseudomonas aeruginosa Fur. Future Microbiol. 13, 853–856 (2018) Visca P. Imperi F. An essential transcriptional regulator: the case of Pseudomonas aeruginosa Fur Future Microbiol. 13 853 856 201810.2217/fmb-2018-008129877110 Search in Google Scholar

Pohl E., Haller J.C., Mijovilovich A., Meyer-Klaucke W., Garman E., Vasil M.L.: Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator. Mol. Microbiol. 47, 903–915 (2003) Pohl E. Haller J.C. Mijovilovich A. Meyer-Klaucke W. Garman E. Vasil M.L. Architecture of a protein central to iron homeostasis: crystal structure and spectroscopic analysis of the ferric uptake regulator Mol. Microbiol. 47 903 915 200310.1046/j.1365-2958.2003.03337.x12581348 Search in Google Scholar

Deng Z., Wang Q., i wsp.: Mechanistic insights into metal iron activation and operator recognition by the ferric uptake regulator. Nat. Commun. 6, 7642 (2015) Deng Z. Wang Q. i wsp Mechanistic insights into metal iron activation and operator recognition by the ferric uptake regulator Nat. Commun. 6 7642 201510.1038/ncomms8642450649526134419 Search in Google Scholar

Pecqueur L., D’Autréaux B., Dupuy J., Nicolet Y., Jacquamet L., Brutscher B., Michaud-Soret I., Bersch B.: Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography. J. Biol. Chem. 281, 21286–21295 (2006) Pecqueur L. D’Autréaux B. Dupuy J. Nicolet Y. Jacquamet L. Brutscher B. Michaud-Soret I. Bersch B. Structural changes of Escherichia coli ferric uptake regulator during metal-dependent dimerization and activation explored by NMR and X-ray crystallography J. Biol. Chem. 281 21286 21295 200610.1074/jbc.M60127820016690618 Search in Google Scholar

Althaus E.W., Outten C.E., Olson K.E., Cao H., O’Halloran T.V.: The ferric uptake regulation (Fur) repressor is a zinc metalloprotein. Biochem. 38, 6559–6569 (1999) Althaus E.W. Outten C.E. Olson K.E. Cao H. O’Halloran T.V. The ferric uptake regulation (Fur) repressor is a zinc metalloprotein Biochem. 38 6559 6569 199910.1021/bi982788s10350474 Search in Google Scholar

Jacquamet L., Aberdam D., Adrait A., Hazemann J.L., Latour J.M., Michaud-Soret I.: X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli. Biochemistry, 37, 2564–2571 (1998) Jacquamet L. Aberdam D. Adrait A. Hazemann J.L. Latour J.M. Michaud-Soret I. X-ray absorption spectroscopy of a new zinc site in the Fur protein from Escherichia coli Biochemistry 37 2564 2571 199810.1021/bi97213449485406 Search in Google Scholar

Bagg A., Neilands J.B.: Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli. Biochemistry, 26, 5471–5477 (1987) Bagg A. Neilands J.B. Ferric uptake regulation protein acts as a repressor, employing iron(II) as a cofactor to bind the operator of an iron transport operon in Escherichia coli Biochemistry 26 5471 5477 198710.1021/bi00391a0392823881 Search in Google Scholar

Escolar L., Pérez-Martín J., De Lorenzo V.: Evidence of an unusually long operator for the Fur repressor in the aerobactin promoter of Escherichia coli. J. Biol. Chem. 275, 24709–24714 (2000) Escolar L. Pérez-Martín J. De Lorenzo V. Evidence of an unusually long operator for the Fur repressor in the aerobactin promoter of Escherichia coli J. Biol. Chem. 275 24709 24714 200010.1074/jbc.M00283920010833520 Search in Google Scholar

Lavrrar J.L., Christoffersen C.A., McIntosh M.A.: Fur-DNA interactions at the bi-directional fepDGC-entS promoter region in Escherichia coli. J. Mol. Biol. 322, 983–995 (2002) Lavrrar J.L. Christoffersen C.A. McIntosh M.A. Fur-DNA interactions at the bi-directional fepDGC-entS promoter region in Escherichia coli J. Mol. Biol. 322 983 995 200210.1016/S0022-2836(02)00849-512367523 Search in Google Scholar

De Lorenzo V., Herrero M., Giovannini F., Neilands B.: Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli. Eur. J. Biochem. 173, 537–546 (1988) De Lorenzo V. Herrero M. Giovannini F. Neilands B. Fur (ferric uptake regulation) protein and CAP (catabolite-activator protein) modulate transcription of fur gene in Escherichia coli Eur. J. Biochem. 173 537 546 198810.1111/j.1432-1033.1988.tb14032.x2836193 Search in Google Scholar

Carpenter B.M., Whitmire J.M., Marell D.S.: This is not your mother’s repressor: the complex role of Fur in pathogenesis. Infect. Immun. 77, 2590–2601 (2009) Carpenter B.M. Whitmire J.M. Marell D.S. This is not your mother’s repressor: the complex role of Fur in pathogenesis Infect. Immun. 77 2590 2601 200910.1128/IAI.00116-09270858119364842 Search in Google Scholar

Agriesti F., Roncarati D., Musiani F., Del Campo C., Iurlaro M., Sparla F., Ciurli S., Danielli A., Scarlato V.: FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves. Nucleid Acid Res. 42, 3138–3151 (2014) Agriesti F. Roncarati D. Musiani F. Del Campo C. Iurlaro M. Sparla F. Ciurli S. Danielli A. Scarlato V. FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves Nucleid Acid Res. 42 3138 3151 201410.1093/nar/gkt1258395066924322295 Search in Google Scholar

Delany I., Spohn G., Pacheco A.F., Ieva R., Alaimo C., Rappuoli R., Scarlato V.: Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site. Mol. Microbiol. 46, 1107–1122 (2002) Delany I. Spohn G. Pacheco A.F. Ieva R. Alaimo C. Rappuoli R. Scarlato V. Autoregulation of Helicobacter pylori Fur revealed by functional analysis of the iron-binding site Mol. Microbiol. 46 1107 1122 200210.1046/j.1365-2958.2002.03227.x12421315 Search in Google Scholar

Zheng M., Doan B., Schneider T.D., Storz G.: OxyR and SoxRS regulation of fur. J. Bacteriol. 181, 4639–4643 (1999) Zheng M. Doan B. Schneider T.D. Storz G. OxyR and SoxRS regulation of fur J. Bacteriol. 181 4639 4643 199910.1128/JB.181.15.4639-4643.199910359710419964 Search in Google Scholar

Varghese S., Wu A., Park S., Imlay K.R., Imlay J.A.: Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli. Mol. Microbiol. 64, 822–830 (2007) Varghese S. Wu A. Park S. Imlay K.R. Imlay J.A. Submicromolar hydrogen peroxide disrupts the ability of Fur protein to control free-iron levels in Escherichia coli Mol. Microbiol. 64 822 830 200710.1111/j.1365-2958.2007.05701.x304884917462026 Search in Google Scholar

Oshima T., Aiba H., Masuda Y., Kanaya S., Sugiura M., Wanner B.L., Mori H., Mizuno T.: Transcriptome analysis of all two‐component regulatory system mutants of Escherichia coli K‐12. Mol. Microbiol. 46, 281–291 (2002) Oshima T. Aiba H. Masuda Y. Kanaya S. Sugiura M. Wanner B.L. Mori H. Mizuno T. Transcriptome analysis of all two‐component regulatory system mutants of Escherichia coli K‐12 Mol. Microbiol. 46 281 291 200210.1046/j.1365-2958.2002.03170.x12366850 Search in Google Scholar

Jacobi C.A., Gregor S., Rakin A., Heesemann J.: Expression analysis of the yersiniabactin receptor gene fyuA and the heme receptor hemR of Yersinia enterocolitica in vitro and in vivo using the reporter for green fluorescent protein and luciferase. Infect. Immun. 69, 7772–7782 (2001) Jacobi C.A. Gregor S. Rakin A. Heesemann J. Expression analysis of the yersiniabactin receptor gene fyuA and the heme receptor hemR of Yersinia enterocolitica in vitro and in vivo using the reporter for green fluorescent protein and luciferase Infect. Immun. 69 7772 7782 200110.1128/IAI.69.12.7772-7782.20019887311705959 Search in Google Scholar

Giel J.L., Rodionov D., Liu M., Blattner F.R., Kiley P.J.: IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli. Mol. Microbiol. 60, 1058–1075 (2006) Giel J.L. Rodionov D. Liu M. Blattner F.R. Kiley P.J. IscR-dependent gene expression links iron-sulphur cluster assembly to the control of O2-regulated genes in Escherichia coli Mol. Microbiol. 60 1058 1075 200610.1111/j.1365-2958.2006.05160.x16677314 Search in Google Scholar

Nesbit A.D., Giel J.L., Rose J.C., Kiley P.J.: Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation. J. Mol. Biol. 387, 28–41 (2009) Nesbit A.D. Giel J.L. Rose J.C. Kiley P.J. Sequence-specific binding to a subset of IscR-regulated promoters does not require IscR Fe-S cluster ligation J. Mol. Biol. 387 28 41 200910.1016/j.jmb.2009.01.055270997419361432 Search in Google Scholar

Miller H.K., Kwuan L., i wsp.: IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence. PLoS Pathog. 10, e1004194 (2014) Miller H.K. Kwuan L. i wsp IscR is essential for Yersinia pseudotuberculosis type III secretion and virulence PLoS Pathog. 10 e1004194 201410.1371/journal.ppat.1004194405577624945271 Search in Google Scholar

Yeo W. Lee J., Lee K., Roe J.: IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe‐S assembly proteins. Mol. Microbiol. 61, 206–218 (2006) Yeo W. Lee J. Lee K. Roe J. IscR acts as an activator in response to oxidative stress for the suf operon encoding Fe‐S assembly proteins Mol. Microbiol. 61 206 218 200610.1111/j.1365-2958.2006.05220.x16824106 Search in Google Scholar

Wu Y., Outten F.W.: IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J. Bacteriol. 191, 1248–1257 (2009) Wu Y. Outten F.W. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression J. Bacteriol. 191 1248 1257 200910.1128/JB.01086-08263198819074392 Search in Google Scholar

Litwin C.M., Quackenbush J.: Characterization of a Vibrio vulnificus LysR homologue, HupR, which regulates expression of the haem uptake outer membrane protein, HupA. Microb. Pathog. 31, 295–307 (2001) Litwin C.M. Quackenbush J. Characterization of a Vibrio vulnificus LysR homologue, HupR, which regulates expression of the haem uptake outer membrane protein, HupA Microb. Pathog. 31 295 307 200110.1006/mpat.2001.047211747377 Search in Google Scholar

Narberhaus F., Waldminghaus T., Chowdhury S.: RNA thermometers. FEMS Microbiol. Rev. 30, 3–16 (2006) Narberhaus F. Waldminghaus T. Chowdhury S. RNA thermometers FEMS Microbiol. Rev. 30 3 16 200610.1111/j.1574-6976.2005.004.x16438677 Search in Google Scholar

Narberhaus F.: Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs. RNA Biol. 7, 84–89 (2010) Narberhaus F. Translational control of bacterial heat shock and virulence genes by temperature-sensing mRNAs RNA Biol. 7 84 89 201010.4161/rna.7.1.1050120009504 Search in Google Scholar

Böhme K., Steinmann R., i wsp.: Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLoS Pathog. 8, e1002518 (2012) Böhme K. Steinmann R. i wsp Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence PLoS Pathog. 8 e1002518 201210.1371/journal.ppat.1002518328098722359501 Search in Google Scholar

Kouse A.B., Righetti F., Kortmann J., Narberhaus F., Murphy E.R.: RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli. PLOS One, 8, e63781 (2013) Kouse A.B. Righetti F. Kortmann J. Narberhaus F. Murphy E.R. RNA-mediated thermoregulation of iron-acquisition genes in Shigella dysenteriae and pathogenic Escherichia coli PLOS One 8 e63781 201310.1371/journal.pone.0063781366039723704938 Search in Google Scholar

Kortmann J., Narberhaus F.: Bacterial RNA thermometers: molecular zippers and switches. Nat. Rev. Microbiol. 10, 255–265 (2012) Kortmann J. Narberhaus F. Bacterial RNA thermometers: molecular zippers and switches Nat. Rev. Microbiol. 10 255 265 201210.1038/nrmicro273022421878 Search in Google Scholar

Guillier M., Gottesman S., Storz G.: Modulating the outer membrane with small RNAs. Genes. Dev. 20, 2338–2348 (2006) Guillier M. Gottesman S. Storz G. Modulating the outer membrane with small RNAs Genes. Dev. 20 2338 2348 200610.1101/gad.145750616951250 Search in Google Scholar

Görke B., Yogel J.: Noncoding RNA control of the making and breaking of sugars. Genes. Dev. 22, 2914–2925 (2008) Görke B. Yogel J. Noncoding RNA control of the making and breaking of sugars Genes. Dev. 22 2914 2925 200810.1101/gad.171780818981470 Search in Google Scholar

Romby P., Vandenesch F., Wagner E.G.: The role of RNAs in the regulation of virulence gene expression. Curr. Opin. Microbiol. 9, 229–236 (2006) Romby P. Vandenesch F. Wagner E.G. The role of RNAs in the regulation of virulence gene expression Curr. Opin. Microbiol. 9 229 236 200610.1016/j.mib.2006.02.00516529986 Search in Google Scholar

Murphy E.R., Payne SM.: RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence. Infect. Immun. 75, 3470–3477 (2007) Murphy E.R. Payne SM. RyhB, an iron-responsive small RNA molecule, regulates Shigella dysenteriae virulence Infect. Immun. 75 3470 3477 200710.1128/IAI.00112-07193295817438026 Search in Google Scholar

Porcheron G., Dozois C.M.: Interplay between iron homeostasis and virulence: Fur and RyhB as a major regulator of bacterial pathogenicity. Vet. Microbiol. 31, 2–14 (2015) Porcheron G. Dozois C.M. Interplay between iron homeostasis and virulence: Fur and RyhB as a major regulator of bacterial pathogenicity Vet. Microbiol. 31 2 14 201510.1016/j.vetmic.2015.03.02425888312 Search in Google Scholar

Mika F., Hengge R.: Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella. Int. J. Mol. Sci. 14, 4560–4579 (2013) Mika F. Hengge R. Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella Int. J. Mol. Sci. 14 4560 4579 201310.3390/ijms14034560363446023443158 Search in Google Scholar

Kim J.N., Kwon Y.M.: Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella: RyhB-2 regulates motility phenotype. Microbiol. Res. 168, 621–629 (2013) Kim J.N. Kwon Y.M. Identification of target transcripts regulated by small RNA RyhB homologs in Salmonella: RyhB-2 regulates motility phenotype Microbiol. Res. 168 621 629 201310.1016/j.micres.2013.06.00223831078 Search in Google Scholar

Massé E., Vanderpool C.K., Gottesman S.: Effect of RyhB small RNA on global iron use in Escherichia coli. J. Bacteriol. 187, 6962–6971 (2005) Massé E. Vanderpool C.K. Gottesman S. Effect of RyhB small RNA on global iron use in Escherichia coli J. Bacteriol. 187 6962 6971 200510.1128/JB.187.20.6962-6971.2005125160116199566 Search in Google Scholar

Chareyre S., Mandin P.: Bacterial iron homeostais regulation by sRNAs. Microbiol. Spectrum. 6, RWR-0010-2017, DOI: 10.1128/ microbiolspec (2018) Chareyre S. Mandin P. Bacterial iron homeostais regulation by sRNAs Microbiol. Spectrum. 6 RWR-0010-2017, DOI: 10.1128/ microbiolspec 2018 Open DOISearch in Google Scholar

Massé E., Escorcia F.E., Gottesman S.: Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli. Genes. Dev. 17, 2374–2383 (2003) Massé E. Escorcia F.E. Gottesman S. Coupled degradation of a small regulatory RNA and its mRNA targets in Escherichia coli Genes. Dev. 17 2374 2383 200310.1101/gad.112710321807512975324 Search in Google Scholar

Morita T, Maki K, Aiba H.: RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes. Dev. 19, 2176–2186 (2005) Morita T Maki K Aiba H. RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs Genes. Dev. 19 2176 2186 200510.1101/gad.1330405122188816166379 Search in Google Scholar

De Lay N., Schu D.J., Gottesman S.: Bacterial small RNA-based negative regulation: Hfq and its accomplices. J. Biol. Chem. 288, 7996–8003 (2013) De Lay N. Schu D.J. Gottesman S. Bacterial small RNA-based negative regulation: Hfq and its accomplices J. Biol. Chem. 288 7996 8003 201310.1074/jbc.R112.441386360561923362267 Search in Google Scholar

Oglesby A.G., Murphy E.R., Iyer V.R., Payne S.M.: Fur regulates acid resistance in Shigella flexneri via RyhB and YdeP. Mol. Microbiol. 58, 1354–1367 (2005) Oglesby A.G. Murphy E.R. Iyer V.R. Payne S.M. Fur regulates acid resistance in Shigella flexneri via RyhB and YdeP Mol. Microbiol. 58 1354 1367 200510.1111/j.1365-2958.2005.04920.x16313621 Search in Google Scholar

Davis B.M., Quinones M., Pratt J., Ding Y., Waldor M.K.: Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae. J. Bacteriol. 187, 4005–4014 (2005) Davis B.M. Quinones M. Pratt J. Ding Y. Waldor M.K. Characterization of the small untranslated RNA RyhB and its regulon in Vibrio cholerae J. Bacteriol. 187 4005 4014 200510.1128/JB.187.12.4005-4014.2005115173615937163 Search in Google Scholar

Kim J.N.: Roles of two RyhB paralogs in the physiology of Salmonella enterica. Microbiol. Res. 186–187, 146–152 (2016) Kim J.N. Roles of two RyhB paralogs in the physiology of Salmonella enterica Microbiol. Res. 186–187 146 152 201610.1016/j.micres.2016.04.00427242152 Search in Google Scholar

Calderon I.L., Morales E.H., Collao B., Calderon P.F., Chahuan C.A., Acuna L.G., Gil F., Saavedra C.P.: Role of Salmonella Typhimurium small RNAs RyhB-1 and RyhB-2 in the oxidative stress response. Res. Microbiol. 165, 30–40 (2013) Calderon I.L. Morales E.H. Collao B. Calderon P.F. Chahuan C.A. Acuna L.G. Gil F. Saavedra C.P. Role of Salmonella Typhimurium small RNAs RyhB-1 and RyhB-2 in the oxidative stress response Res. Microbiol. 165 30 40 201310.1016/j.resmic.2013.10.00824239962 Search in Google Scholar

Deng Z., Meng X., Su S., Liu Z., Ji X., Zhang Y., Zhao X., Wang X., Yang R., Han Y.: Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability. Res. Microbiol. 163, 413–418 (2012) Deng Z. Meng X. Su S. Liu Z. Ji X. Zhang Y. Zhao X. Wang X. Yang R. Han Y. Two sRNA RyhB homologs from Yersinia pestis biovar microtus expressed in vivo have differential Hfq-dependent stability Res. Microbiol. 163 413 418 201210.1016/j.resmic.2012.05.00622659336 Search in Google Scholar

Huang S.H., Wang C.K., Peng H.L., Wu C.C., Chen Y.T., Hong Y.M., Lin C.T.: Role of the small RNA RyhB in the Fur regulon in mediating the capsular polysaccharide biosynthesis and iron acquisition systems in Klebsiella pneumoniae. BMC Microbiol. 24, DOI: 10.1186/1471-2180-12-148 (2012) Huang S.H. Wang C.K. Peng H.L. Wu C.C. Chen Y.T. Hong Y.M. Lin C.T. Role of the small RNA RyhB in the Fur regulon in mediating the capsular polysaccharide biosynthesis and iron acquisition systems in Klebsiella pneumoniae BMC Microbiol. 24 DOI: 10.1186/1471-2180-12-148 2012342307522827802 Open DOISearch in Google Scholar

Massé E., Gottesman S.: A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc. Natl. Acad. Sci. USA, 99, 4620–4625 (2002) Massé E. Gottesman S. A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli Proc. Natl. Acad. Sci. USA 99 4620 4625 200210.1073/pnas.03206659912369711917098 Search in Google Scholar

Večerek B., Moll I., Bläsi U.: Control of Fur synthesis by the non‐coding RNA RyhB and iron‐responsive decoding. EMBO J. 26: 965–975 (2007) Večerek B. Moll I. Bläsi U. Control of Fur synthesis by the non‐coding RNA RyhB and iron‐responsive decoding EMBO J. 26 965 975 200710.1038/sj.emboj.7601553185283517268550 Search in Google Scholar

Prévost K., Desnoyers G., Jacques J.F., Lavoie F., Massé E.: Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage. Genes. Dev. 25, 385–396 (2011) Prévost K. Desnoyers G. Jacques J.F. Lavoie F. Massé E. Small RNA-induced mRNA degradation achieved through both translation block and activated cleavage Genes. Dev. 25 385 396 201110.1101/gad.2001711304216121289064 Search in Google Scholar

Salvail H., Caron M., Bélanger J., Massé E.: Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin. EMBO. J. 32, 2764–2778 (2013) Salvail H. Caron M. Bélanger J. Massé E. Antagonistic functions between the RNA chaperone Hfq and an sRNA regulate sensitivity to the antibiotic colicin EMBO. J. 32 2764 2778 201310.1038/emboj.2013.205380143924065131 Search in Google Scholar

Li F., Wang Y., Gong K., Wang Q., Liang Q., Qi Q.: Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli. FEMS Microbiol. Lett. 350, 209–215 (2014) Li F. Wang Y. Gong K. Wang Q. Liang Q. Qi Q. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli FEMS Microbiol. Lett. 350 209 215 201410.1111/1574-6968.1232224188714 Search in Google Scholar

eISSN:
2545-3149
Languages:
English, Polish
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology