Open Access

Antimicrobial activity and cytotoxicity of transition metal carboxylates derived from agaric acid


Cite

Abrahamson HB, Rezvani AB, Brushmiller JG. Photochemical and spectroscopic studies of complexes of iron(II1) with citric acid and other carboxylic acids. Inorg Chim Acta. 1994;226:117–127. AbrahamsonHB RezvaniAB BrushmillerJG Photochemical and spectroscopic studies of complexes of iron(II1) with citric acid and other carboxylic acids Inorg Chim Acta 1994 226 117 127 10.1016/0020-1693(94)04077-X Search in Google Scholar

Alessio E. Thirty years of the drug candidate NAMI-A and the myths in the field of ruthenium anticancer compounds: a personal perspective. Eur J Inorg Chem. 2017;2017:1549–1560. AlessioE Thirty years of the drug candidate NAMI-A and the myths in the field of ruthenium anticancer compounds: a personal perspective Eur J Inorg Chem 2017 2017 1549 1560 10.1002/ejic.201600986 Search in Google Scholar

Ali I, Wani WA, Saleem K. Empirical formulae to molecular structures of metal complexes by molar conductance. Synth React Inorg Met-Org Chem. 2013;43:1162–1170. AliI WaniWA SaleemK Empirical formulae to molecular structures of metal complexes by molar conductance Synth React Inorg Met-Org Chem 2013 43 1162 1170 10.1080/15533174.2012.756898 Search in Google Scholar

Bacchi CJ, Ciaccio EI, Koren LE. Effects of some antitumor agents on growth and glycolytic enzymes of the flagellate Crithidia. J Bacteriol. 1969;98:23–28. BacchiCJ CiaccioEI KorenLE Effects of some antitumor agents on growth and glycolytic enzymes of the flagellate Crithidia J Bacteriol 1969 98 23 28 10.1128/jb.98.1.23-28.1969 Search in Google Scholar

Baggio R, Perec M. Isolation and characterization of a polymeric lanthanum citrate. Inorg Chem. 2004;43:6965–6968. BaggioR PerecM Isolation and characterization of a polymeric lanthanum citrate Inorg Chem 2004 43 6965 6968 10.1021/ic049165p Search in Google Scholar

Baker EN, Baker HM, Anderson BF, Reeves RD. Chelation of nickel(II) by citrate. The crystal structure of a nickel-citrate complex, K2[Ni(C6H5O7)(H2O)2]2. Inorg Chim Acta. 1983;78:281–285. BakerEN BakerHM AndersonBF ReevesRD Chelation of nickel(II) by citrate. The crystal structure of a nickel-citrate complex, K2[Ni(C6H5O7)(H2O)2]2 Inorg Chim Acta 1983 78 281 285 10.1016/S0020-1693(00)86530-5 Search in Google Scholar

Bitha P, Child RG, Hlavka JJ, Lin Y. Platinum complexes of aliphatic tricarboxylic acid. EP0185225A1, Jun 25, 1986 BithaP ChildRG HlavkaJJ LinY Platinum complexes of aliphatic tricarboxylic acid EP0185225A1, Jun 25 1986 Search in Google Scholar

Boghaei DM, Najafpour MM. Crystal structure of Gua4[Cu2(Cit)2] {Gua = Guanidinium, Cit = Citrate = 2-hydroxo-1,2,3-tricarboxylatopropane}. Anal Sci. 2007;23:23–24. BoghaeiDM NajafpourMM Crystal structure of Gua4[Cu2(Cit)2] {Gua = Guanidinium, Cit = Citrate = 2-hydroxo-1,2,3-tricarboxylatopropane} Anal Sci 2007 23 23 24 10.2116/analscix.23.x123 Search in Google Scholar

Borenfreund E.; Puerner JA. Cytotoxicity of metals, metal-metal and metal-chelator combinations assayed in vitro. Toxicology. 1986;39:121–134. BorenfreundE. PuernerJA Cytotoxicity of metals, metal-metal and metal-chelator combinations assayed in vitro Toxicology 1986 39 121 134 10.1016/0300-483X(86)90130-7 Search in Google Scholar

Burdach M. Use of the white agaric in night perspirations. The Lancet. 1831;16:316. BurdachM Use of the white agaric in night perspirations The Lancet 1831 16 316 10.1016/S0140-6736(02)94043-2 Search in Google Scholar

Carrano RA, Malone MH. Pharmacologic study of norcaperatic and agaricic acids. J Pharm Sci. 1967;56:1611–1614. CarranoRA MaloneMH Pharmacologic study of norcaperatic and agaricic acids J Pharm Sci 1967 56 1611 1614 10.1002/jps.26005612165626691 Search in Google Scholar

Chávez E, Chávez R, Carrasco N. The effect of agaric acid on citrate transport in rat liver mitochondria. Life Sci. 1978;23:1423–1429. ChávezE ChávezR CarrascoN The effect of agaric acid on citrate transport in rat liver mitochondria Life Sci 1978 23 1423 1429 10.1016/0024-3205(78)90123-6 Search in Google Scholar

Ciaccio EI, Boxer GE, Devlin TM, Ford RT. Screening data from selected in vitro enzymatic systems I. Standard test compounds from the Cancer Chemotherapy Nation Service Center. Cancer Res. 1967;27:1033–1069. CiaccioEI BoxerGE DevlinTM FordRT Screening data from selected in vitro enzymatic systems I. Standard test compounds from the Cancer Chemotherapy Nation Service Center Cancer Res 1967 27 1033 1069 Search in Google Scholar

Ciaccio EI, Boxer GE, Devlin TM, Ford RT. Screening data from selected in vitro enzymatic systems II. Compounds specifically selected for the dehydrogenase inhibition screens. Cancer Res. 1967;27:1070–1104. CiaccioEI BoxerGE DevlinTM FordRT Screening data from selected in vitro enzymatic systems II. Compounds specifically selected for the dehydrogenase inhibition screens Cancer Res 1967 27 1070 1104 Search in Google Scholar

de Paiva REF, Marçal Neto A, Santos IA, Jardim ACG, Corbi PP, Bergamini FRG. What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks. Dalton Trans. 2020;49:16004–16033. de PaivaREF Marçal NetoA SantosIA JardimACG CorbiPP BergaminiFRG What is holding back the development of antiviral metallodrugs? A literature overview and implications for SARS-CoV-2 therapeutics and future viral outbreaks Dalton Trans 2020 49 16004 16033 10.1039/D0DT02478C33030464 Search in Google Scholar

Deng YF, Zhou ZH. Synthesis and crystal structure of a zinc citrate complex [Zn(H2cit)(H2O)]n. J Coord Chem. 2009;62:1484–1491. DengYF ZhouZH Synthesis and crystal structure of a zinc citrate complex [Zn(H2cit)(H2O)]n J Coord Chem 2009 62 1484 1491 10.1080/00958970802596391 Search in Google Scholar

Drzewiecka A, Koziol AE, Lowczak M, Lis T. Poly[tetraaquadi-μ6-citrato-tetra-copper(II)]: a redetermination. Acta Cryst. 2007;E63:m2339–m2340. DrzewieckaA KoziolAE LowczakM LisT Poly[tetraaquadi-μ6-citrato-tetra-copper(II)]: a redetermination Acta Cryst 2007 E63 m2339 m2340 10.1107/S1600536807039086 Search in Google Scholar

Field TB, McCourt JL, McBryde WAE. Composition and stability of iron and copper citrate complexes in aqueous solution. Can J Chem. 1974;52:3119–3124. FieldTB McCourtJL McBrydeWAE Composition and stability of iron and copper citrate complexes in aqueous solution Can J Chem 1974 52 3119 3124 10.1139/v74-458 Search in Google Scholar

Frezza M, Hindo S, Chen D, Davenport A, Schmitt S, Tomco D, Dou QP. Novel metals and metal complexes as platforms for cancer therapy. Curr Pharm Des. 2010;16:1813–1825. FrezzaM HindoS ChenD DavenportA SchmittS TomcoD DouQP Novel metals and metal complexes as platforms for cancer therapy Curr Pharm Des 2010 16 1813 1825 10.2174/138161210791209009375928720337575 Search in Google Scholar

Galanski M, Arion VB, Jakupec MA, Keppler BK. Recent developments in the field of tumor-inhibiting metal complexes. Curr Pharm Des. 2003;9:2078–2089. GalanskiM ArionVB JakupecMA KepplerBK Recent developments in the field of tumor-inhibiting metal complexes Curr Pharm Des 2003 9 2078 2089 10.2174/138161203345418014529417 Search in Google Scholar

García N, Zazueta C, Pavón N, Chávez E. Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity. Mitochondrion. 2005;5:272–281. GarcíaN ZazuetaC PavónN ChávezE Agaric acid induces mitochondrial permeability transition through its interaction with the adenine nucleotide translocase. Its dependence on membrane fluidity Mitochondrion 2005 5 272 281 10.1016/j.mito.2005.05.00216050990 Search in Google Scholar

Habala L, Devínsky F, Egger AE. Metal complexes as urease inhibitors. J Coord Chem. 2018;71:907–940. HabalaL DevínskyF EggerAE Metal complexes as urease inhibitors J Coord Chem 2018 71 907 940 10.1080/00958972.2018.1458228 Search in Google Scholar

Hanif M, Hartinger CG. Anticancer metallodrugs: where is the next cisplatin? Future Med Chem. 2018;10:615–617. HanifM HartingerCG Anticancer metallodrugs: where is the next cisplatin? Future Med Chem 2018 10 615 617 10.4155/fmc-2017-031729411994 Search in Google Scholar

Harrison JJ, Ceri H, Stremick CA, Turner RJ. Biofilm susceptibility to metal toxicity. Environ Microbiol. 2004;6:1220–1227. HarrisonJJ CeriH StremickCA TurnerRJ Biofilm susceptibility to metal toxicity Environ Microbiol 2004 6 1220 1227 10.1111/j.1462-2920.2004.00656.x15560820 Search in Google Scholar

Huta B, Lensboeur JJ, Lowe AJ, Zubieta J, Doyle RP. Metal-citrate complex uptake and CitMHS transporters: From coordination chemistry to possible vaccine development. Inorg Chim Acta. 2012;393:125–134. HutaB LensboeurJJ LoweAJ ZubietaJ DoyleRP Metal-citrate complex uptake and CitMHS transporters: From coordination chemistry to possible vaccine development Inorg Chim Acta 2012 393 125 134 10.1016/j.ica.2012.06.025 Search in Google Scholar

Johnson A, Northcote-Smith J, Suntharalingam K. Emerging metallopharmaceuticals for the treatment of cancer. Trends Chem. 2021;3:47–58. JohnsonA Northcote-SmithJ SuntharalingamK Emerging metallopharmaceuticals for the treatment of cancer Trends Chem 2021 3 47 58 10.1016/j.trechm.2020.10.011 Search in Google Scholar

Kilpin KJ, Dyson PJ. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem Sci. 2013;4:1410–1419. KilpinKJ DysonPJ Enzyme inhibition by metal complexes: concepts, strategies and applications Chem Sci 2013 4 1410 1419 10.1039/c3sc22349c Search in Google Scholar

Kumar RS, Paul P, Riyasdeen A, Wagniéres G, van den Bergh H, Akbarsha MA, Arunachalam S. Colloids Surf B Biointerfaces. 2011;86:35–44. KumarRS PaulP RiyasdeenA WagniéresG van den BerghH AkbarshaMA ArunachalamS Colloids Surf B Biointerfaces 2011 86 35 44 10.1016/j.colsurfb.2011.03.01221515032 Search in Google Scholar

Lemire JA, Harrison JJ, Turner RJ. Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nat Rev Microbiol. 2013;11:371–384. LemireJA HarrisonJJ TurnerRJ Antimicrobial activity of metals: mechanisms, molecular targets and applications Nat Rev Microbiol 2013 11 371 384 10.1038/nrmicro302823669886 Search in Google Scholar

Lu L, Zhu M. Protein tyrosine phosphatase inhibition by metals and metal complexes. Antioxid Redox Signal. 2014;20: 2210–2224. LuL ZhuM Protein tyrosine phosphatase inhibition by metals and metal complexes Antioxid Redox Signal 2014 20 2210 2224 10.1089/ars.2013.572024382261 Search in Google Scholar

Lukáč M, Lacko I, Bukovský M, Kyselová Z, Karlovská J, Horváth B, Devínsky F. Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine. Open Chem. 2010;8:194–201. LukáčM LackoI BukovskýM KyselováZ KarlovskáJ HorváthB DevínskyF Synthesis and antimicrobial activity of a series of optically active quaternary ammonium salts derived from phenylalanine Open Chem 2010 8 194 201 10.2478/s11532-009-0126-8 Search in Google Scholar

Mastropaolo D, Powers DA, Potenza JA, Schugar HJ. Crystal structure and magnetic properties of copper citrate dihydrate, Cu2C6H4O7·2H2O. Inorg Chem. 1976;15:1444–1449. MastropaoloD PowersDA PotenzaJA SchugarHJ Crystal structure and magnetic properties of copper citrate dihydrate, Cu2C6H4O7·2H2O Inorg Chem 1976 15 1444 1449 10.1021/ic50160a038 Search in Google Scholar

Miret S, De Groene EM, Klaffke W. Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2. J Biomol Screen. 2006;11:184–193. MiretS De GroeneEM KlaffkeW Comparison of in vitro assays of cellular toxicity in the human hepatic cell line HepG2 J Biomol Screen 2006 11 184 193 10.1177/108705710528378716314402 Search in Google Scholar

Nagaraj K, Arunachalam S. Synthesis, CMC determination, nucleic acid binding and cytotoxicity of a surfactant-cobalt(iii) complex: Effect of ionic liquid additive. New J Chem. 2014;38:366–375. NagarajK ArunachalamS Synthesis, CMC determination, nucleic acid binding and cytotoxicity of a surfactant-cobalt(iii) complex: Effect of ionic liquid additive New J Chem 2014 38 366 375 10.1039/C3NJ00832K Search in Google Scholar

Ndagi U, Mhlongo N, Soliman ME. Metal complexes in cancer therapy – an update from drug design perspective. Drug Des Devel Ther. 2017;11:599–616. NdagiU MhlongoN SolimanME Metal complexes in cancer therapy – an update from drug design perspective Drug Des Devel Ther 2017 11 599 616 10.2147/DDDT.S119488 Search in Google Scholar

Negm NA, Zaki MF. Structural and biological behaviors of some nonionic Schiff-base amphiphiles and their Cu(II) and Fe(III) metal complexes. Colloids Surf B Biointerfaces. 2008;64:179–183. NegmNA ZakiMF Structural and biological behaviors of some nonionic Schiff-base amphiphiles and their Cu(II) and Fe(III) metal complexes Colloids Surf B Biointerfaces 2008 64 179 183 10.1016/j.colsurfb.2008.01.018 Search in Google Scholar

Nies DH. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999;51:730–750. NiesDH Microbial heavy-metal resistance Appl Microbiol Biotechnol 1999 51 730 750 10.1007/s002530051457 Search in Google Scholar

Palacios EG, Juárez-López G, Monhemius AJ. Infrared spectroscopy of metal carboxylates II. Analysis of Fe(III), Ni and Zn carboxylate solutions. Hydrometallurgy. 2004;72:139–148. PalaciosEG Juárez-LópezG MonhemiusAJ Infrared spectroscopy of metal carboxylates II. Analysis of Fe(III), Ni and Zn carboxylate solutions Hydrometallurgy 2004 72 139 148 10.1016/S0304-386X(03)00137-3 Search in Google Scholar

Pierre JL, Gautier-Luneau I. Iron and citric acid: A fuzzy chemistry of ubiquitous biological relevance. BioMetals. 2000;13:91–96. PierreJL Gautier-LuneauI Iron and citric acid: A fuzzy chemistry of ubiquitous biological relevance BioMetals 2000 13 91 96 10.1023/A:1009225701332 Search in Google Scholar

Raspotnig G, Fauler G, Jantscher A, Windischhofer W, Schachl K, Leis HJ. Colorimetric determination of cell numbers by Janus green staining. Anal Biochem. 1999;275:74–83. RaspotnigG FaulerG JantscherA WindischhoferW SchachlK LeisHJ Colorimetric determination of cell numbers by Janus green staining Anal Biochem 1999 275 74 83 10.1006/abio.1999.430910542111 Search in Google Scholar

Regiel-Futyra A, Dąbrowski JM, Mazuryk O, Śpiewak K, Kyzioł A, Pucelik B, Brindell M, Stochel G. Bioinorganic antimicrobial strategies in the resistance era. Coord Chem Rev. 2017;351:76–117. Regiel-FutyraA DąbrowskiJM MazurykO ŚpiewakK KyziołA PucelikB BrindellM StochelG Bioinorganic antimicrobial strategies in the resistance era Coord Chem Rev 2017 351 76 117 10.1016/j.ccr.2017.05.005 Search in Google Scholar

Schattschneider C, Kettenmann SD, Hinojosa S, Heinrich J, Kulak N. Biological activity of amphiphilic metal complexes. Coord Chem Rev. 2019;385:191–207. SchattschneiderC KettenmannSD HinojosaS HeinrichJ KulakN Biological activity of amphiphilic metal complexes Coord Chem Rev 2019 385 191 207 10.1016/j.ccr.2018.12.007 Search in Google Scholar

Siewert B, Langerman M, Hontani Y, Kennis JTM, van Rixel VHS, Limburg B, Siegler MA, Talens Saez V, Kieltyka RE, Bonnet S. Turning on the red phosphorescence of a [Ru(tpy)(bpy)(Cl)]Cl complex by amide substitution: self-aggregation, toxicity, and cellular localization of an emissive ruthenium-based amphiphile. Chem Commun. 2017;53:11126–11129. SiewertB LangermanM HontaniY KennisJTM van RixelVHS LimburgB SieglerMA Talens SaezV KieltykaRE BonnetS Turning on the red phosphorescence of a [Ru(tpy)(bpy)(Cl)]Cl complex by amide substitution: self-aggregation, toxicity, and cellular localization of an emissive ruthenium-based amphiphile Chem Commun 2017 53 11126 11129 10.1039/C7CC02989F28682371 Search in Google Scholar

Stamets P. Antiviral activity from medicinal mushrooms. US 2006/0171958 Al, Aug 3, 2006 StametsP Antiviral activity from medicinal mushrooms US 2006/0171958 Al, Aug 3 2006 Search in Google Scholar

Vukosav P, Mlakar M, Tomišić V. Revision of iron(III)–citrate speciation in aqueous solution. Voltammetric and spectrophotometric studies. Analyt Chim Acta. 2012;745:85–91. VukosavP MlakarM TomišićV Revision of iron(III)–citrate speciation in aqueous solution. Voltammetric and spectrophotometric studies Analyt Chim Acta 2012 745 85 91 10.1016/j.aca.2012.07.03622938610 Search in Google Scholar

Zabiszak M, Nowak M, Taras-Goslinska K, Kaczmarek MT, Hnatejko Z, Jastrzab R. Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems. J Inorg Biochem. 2018;182:37–47. ZabiszakM NowakM Taras-GoslinskaK KaczmarekMT HnatejkoZ JastrzabR Carboxyl groups of citric acid in the process of complex formation with bivalent and trivalent metal ions in biological systems J Inorg Biochem 2018 182 37 47 10.1016/j.jinorgbio.2018.01.01729407868 Search in Google Scholar

Zhou ZH, Deng YF, Wan HL. Structural Diversities of Cobalt(II) Coordination Polymers with Citric Acid. Cryst Growth Des. 2005;5:1109–1117. ZhouZH DengYF WanHL Structural Diversities of Cobalt(II) Coordination Polymers with Citric Acid Cryst Growth Des 2005 5 1109 1117 10.1021/cg0496282 Search in Google Scholar

Zhou ZH, Zhang H, Jiang YQ, Lin DH, Wan HL, Tsai KR. Complexation between vanadium(V) and citrate: spectroscopic and structural characterization of a dinuclear vanadium(V) complex. Trans Met Chem. 1999;24:605–609. ZhouZH ZhangH JiangYQ LinDH WanHL TsaiKR Complexation between vanadium(V) and citrate: spectroscopic and structural characterization of a dinuclear vanadium(V) complex Trans Met Chem 1999 24 605 609 10.1023/A:1006947218366 Search in Google Scholar

eISSN:
2453-6725
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Pharmacy, other