Open Access

Efficient Non-Odometry Method for Environment Mapping and Localisation of Mobile Robots


Cite

1. Ambroziak L., Gosiewski Z. (2015), Two stage switching control for autonomous formation flight of unmanned aerial vehicles, Aerospace Science and Technology, Vol. 46, 221–226. Search in Google Scholar

2. Ambroziak L., Simha A., Pawluszewicz E., Kotta Ü., Bożko A., Kondratiuk M. (2019), Motor Failure Tolerant Control System With Self Diagnostics for Unmanned Multirotors, 24th International Conference on Methods and Models in Automation and Robotics (MMAR), Międzyzdroje, Poland, 422–427.10.1109/MMAR.2019.8864726 Search in Google Scholar

3. Bekkali A., Sanson H., Matsumoto M. (2007), RFID indoor positioning based on probabilistic RFID map and Kalman filtering, Proc. of the 3rd IEEE International Conference on Wireless and Mobile Computing Networking and Communications, 21. Search in Google Scholar

4. Chen X, Zhang H, Lu H., Xiao J., Qiu Q., Li Y. (2017), Robust SLAM system based on monocular vision and LiDAR for robotic urban search and rescue, IEEE International Symposium on Safety, Security and Rescue Robotics (SSRR), Shanghai, 41–47.10.1109/SSRR.2017.8088138 Search in Google Scholar

5. Dellaert F. (2005): Square root SAM, Robotics Sci. Syst., ed. by S. Thrun, G. Sukhatme, S. Schaal, O. Brock, MIT Press, Cambridge.10.15607/RSS.2005.I.024 Search in Google Scholar

6. Dissanayake G., Durrant-Whyte H., Bailey T. (2000), A computationally efficient solution to the simultaneous localisation and map building (SLAM) problem, Proc. of the IEEE International Conference on Robotics and Automation (ICRA) - Millennium Conference, Symposia Proceedings (Cat. No.00CH37065), Vol. 2, San Francisco, CA, USA, 1009–1014. Search in Google Scholar

7. Dissanayake G., Newman P., Durrant-Whyte H. F., Clark S., Csobra M. (1999), An experimental and theoretical investigation into simultaneous localisation and map building (SLAM), Proc. of the 6th International Symposium on Experimental Robotics, March, 171–180. Search in Google Scholar

8. Dubbelman G., Browning B. (2015), COP-SLAM: Closed-Form Online Pose-Chain Optimization for Visual SLAM, IEEE Transactions on Robotics, Vol. 31, No. 5, Oct., 1194–1213. Search in Google Scholar

9. Gao M., Tang J., Yang Y., He Z., Zeng Y. (2019) An Obstacle Detection and Avoidance System for Mobile Robot with a Laser Radar, 16th IEEE International Conference on Networking, Sensing and Control (ICNSC), Banff, AB, Canada, 63–68.10.1109/ICNSC.2019.8743288 Search in Google Scholar

10. Guivant J., Nebot E. (2002), Improving computational and memory requirements of simultaneous localization and map building algorithms, Proc. of the IEEE International Conference on Robotics and Automation (Cat. No.02CH37292), Vol. 3, Washington, DC, USA, 2731–2736. Search in Google Scholar

11. Janah M., Fujimoto Y. (2018), Performance Analysis of an Indoor Localization and Mapping System Using 2D Laser Range Finder Sensor, 44th Annual Conference of the IEEE Industrial Electronics Society (IECON), 5463–5468.10.1109/IECON.2018.8591207 Search in Google Scholar

12. Klecka J., Horak K., Novacek P., Davidek D. (2016), Non-odometry SLAM and Effect of Feature Space Parametrization on its Covariance Convergence, IFAC-PapersOnLine, Vol. 49, Issue 25, 139–144. Search in Google Scholar

13. Kownacki, C., Ambroziak, L. (2019), Adaptation Mechanism of Asymmetrical Potential Field Improving Precision of Position Tracking in the Case of Nonholonomic UAVs, Robotica (DOI: 10.1017/S0263574719000286), Vol. 37, No.10, 1823–1834. Search in Google Scholar

14. Lanzon A., Freddi A., Longhi S. (2014), Flight control of a quadrotor vehicle subsequent rotor failure, Journal of Guidance Control and Dynamics, Vol. 37, No. 2, 580–591. Search in Google Scholar

15. Li H., Chen Q. (2010), Towards a non-probabilistic approach to hybrid geometry-topological SLAM, 8th World Congress on Intelligent Control and Automation, Jinan, 1045–1050. Search in Google Scholar

16. Li P., Ke Z. (2019), Feature-based SLAM for Dense Mapping, International Conference on Advanced Mechatronic Systems (ICAMechS), Kusatsu, Shiga, Japan, 372–377.10.1109/ICAMechS.2019.8861671 Search in Google Scholar

17. Lu F., Milios E. (1997), Globally consistent range scan alignment for environmental mapping, Auton. Robots 4, 333–349. Search in Google Scholar

18. Moutarlier P., Chatila R. (1989), Stochastic multisensory data fusion for mobile robot location and environment modeling, 5th Int. Symp. Robotics Res. (ISRR), 207–216. Search in Google Scholar

19. Nakamura Y., Fujimoto Y. (2014), Validation of SLAM without odometry in outdoor environment, 13th IEEE International Workshop on Advanced Motion Control (AMC), Yokohama, 278–283.10.1109/AMC.2014.6823295 Search in Google Scholar

20. Romaniuk S., Ambroziak L., Gosiewski Z., Isto P. (2016), Real time localization system with Extended Kalman Filter for indoor applications, 21st International Conference on Methods and Models in Automation and Robotics (MMAR), Miedzyzdroje, Poland, 42–47.10.1109/MMAR.2016.7575085 Search in Google Scholar

21. Rulin H. (2017), Research on Key Technologies of Dynamic Obstacle Avoidance in Driverless Vehicles, University of Science and Technology of China. Search in Google Scholar

22. Smith R., Self M., Cheeseman P. (1990), Estimating uncertain spatial relationships in robotics, Autonomous Robot Vehicles, ed. by I.J. Cox, G.T. Wilfong, Springer Verlag, Berlin, Heidelberg, 167–193. Search in Google Scholar

23. Soragna A., Baldini M., Joho D., Kümmerle R., Grisetti G. (2019), Active SLAM using Connectivity Graphs as Priors, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 340–346.10.1109/IROS40897.2019.8968613 Search in Google Scholar

24. Xiaolin W., Jing Y., Fengchi S., Huan C., Shuzi H. (2012), An approach to multi-robot cooperative SLAM, Proc. of the 31st Chinese Control Conference, Hefei, 4904–4909. Search in Google Scholar

25. Zhu D., Sun X., Wang L., Liu B., Ji K. (2019), Mobile Robot SLAM Algorithm Based on Improved Firefly Particle Filter, International Conference on Robots & Intelligent System (ICRIS), Haikou, China, 35–38.10.1109/ICRIS.2019.00018 Search in Google Scholar