Open Access

Investigating the landing kinetics factors and preparatory knee muscle activation in female handball players with and without dynamic knee valgus while performing single leg landing


Cite

1. Ali N., Robertson D.G.E., Rouhi G. (2014) Sagittal plane body kinematics and kinetics during single-leg landing from increasing vertical heights and horizontal distances: Implications for risk of non-contact ACL injury. The Knee, 21: 38-46..10.1016/j.knee.2012.12.00323274067 Search in Google Scholar

2. Barbosa A.C., Vieira E.R., Barbosa M.A., Fernandes I., Damázio M., Badaró B. (2018) Gluteal activation and increased frontal plane projection angle during a step-down test in young women. Hum. Mov., 19: 64-70. Search in Google Scholar

3. Burke D., Dickson H.G., Skuse N.F. (1991) Task-dependent changes in the responses to low-threshold cutaneous afferent volleys in the human lower limb. J. Physiol., 432: 445-458. Search in Google Scholar

4. Cavanaugh J.T., Guskiewicz K.M., Stergiou N. (2005) A nonlinear dynamic approach for evaluating postural control. J. Sports Med., 35: 935-950. Search in Google Scholar

5. Claudino J.G., Mezêncio B., Soncin R., Pennone J., Pinho J.P., Borges E., Castiglio L., Miyashiro P.S., Pomi E., Masuko W. (2017) Relationship Between Knee Valgus and Ground Reaction Force in Soccer Players Using Soccer Boots Landing on an Official Artificial Turf. Open Sports Sci. J., 10.10.2174/1875399X01710010257 Search in Google Scholar

6. Colby S.M., Hintermeister R.A., Torry M.R., Stead-man J. (1999) Lower limb stability with ACL impairment. JOSPT, 29: 444-451.10.2519/jospt.1999.29.8.44410444734 Search in Google Scholar

7. Dallinga J.M., van der Does H.T., Benjaminse A., Lem-mink K.A. (2016) Dynamic postural stability differences between male and female players with and without ankle sprain. Phys. Ther. Sport,. 17: 69-75. Search in Google Scholar

8. de Noronha M., Refshauge K.M., Herbert R.D., Kil-breath S.L. (2006) Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain? BJSM, 40: 824-828.10.1136/bjsm.2006.029645246505316920769 Search in Google Scholar

9. Fransz D.P., Huurnink A., de Boode V.A., Kingma I., van Dieën J.H. (2016) Time series of ground reaction forces following a single leg drop jump landing in elite youth soccer players consist of four distinct phases. Gait Posture, 50: 137-144.10.1016/j.gaitpost.2016.09.00227611061 Search in Google Scholar

10. Gokeler A., Hof A., Arnold M., Dijkstra P., Postema K., Otten E. (2010) Abnormal landing strategies after ACL reconstruction. Scand. J. Med. Sci. Sports, 20: e12-e19.10.1111/j.1600-0838.2008.00873.x19210671 Search in Google Scholar

11. Griffin L.Y., Agel J., Albohm M.J., Arendt E.A., Dick R.W., Garrett W.E., Garrick J.G., Hewett T.E., Huston L., Ireland M.L. (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. JAAOS, 8: 141-150.10.5435/00124635-200005000-0000110874221 Search in Google Scholar

12. Harris-Hayes M., Steger-May K., Koh C., Royer N.K., Graci V., Salsich G.B. (2014) Classification of lower extremity movement patterns based on visual assessment: reliability and correlation with 2-dimensional video analysis. J. Athl. Train., 49: 304-310. Search in Google Scholar

13. Hefti E., Müller W., Jakob R., Stäubli H-U. (1993) Evaluation of knee ligament injuries with the IKDC form. Knee Surg. Sports Traumatol. Arthrosc., 1: 226-234. Search in Google Scholar

14. Hewett T.E., Myer G.D., Ford K.R. (2006) Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med., 34: 299-311. Search in Google Scholar

15. Hewett T.E., Myer G.D., Ford K.R., Heidt Jr R.S., Colosimo A.J., McLean S.G., Van den Bogert A.J., Paterno M.V., Succop P. (2005) Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med., 33: 492-501.10.1177/036354650426959115722287 Search in Google Scholar

16. Hogan N., Mann R.W. (1980) Myoelectric signal processing: Optimal estimation applied to electromyography-Part I: Derivation of the optimal myoprocessor. IEEE. Trans. Biomed. Eng., 382-395.10.1109/TBME.1980.326652 Search in Google Scholar

17. Hoshiba T., Fukubayashi T. (2015) Biomechanical Adaptations in Subjects After Anterior Cruciate Ligament Reconstruction: Preventing Secondary Injury. In: Sports Injuries and Prevention, Springer, p. 257-265.10.1007/978-4-431-55318-2_21 Search in Google Scholar

18. Huston L.J., Greenfield M.L.V., Wojtys E.M. (2000) Anterior cruciate ligament injuries in the female athlete: potential risk factors. Clin. Orthop. Relat. Res., 372: 50-63. Search in Google Scholar

19. Jiang B.C., Yang W-H., Shieh J-S., Fan J-Z., Peng C-K. (2013) Entropy-based method for COP data analysis. Theor. Issues Ergon. Sci., 14: 227-246. Search in Google Scholar

20. Knapp D., Lee S.Y., Chinn L., Saliba S.A., Hertel J. (2011) Differential ability of selected postural-control measures in the prediction of chronic ankle instability status. J. Athl. Train., 46: 257-262. Search in Google Scholar

21. Lacquaniti F., Licata F., Soechting J. (1982) The mechanical behavior of the human forearm in response to transient perturbations. Biol. Cybern., 44: 35-46. Search in Google Scholar

22. Latash M.L. (2012) The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res., 217: 1-5. Search in Google Scholar

23. Laughlin W.A., Weinhandl J.T., Kernozek T.W., Cobb S.C., Keenan K.G., O’Connor K.M. (2011) The effects of single-leg landing technique on ACL loading. J. Biomech., 44: 1845-1851. Search in Google Scholar

24. Lederman E. (2010) Neuromuscular rehabilitation in manual and physical therapy. Churchill Livingstone 128. Search in Google Scholar

25. Letafatkar A., Rajabi R., Tekamejani E.E., Minoonejad H. (2015) Effects of perturbation training on knee flexion angle and quadriceps to hamstring cocontraction of female athletes with quadriceps dominance deficit: Pre-post intervention study. The Knee, 22: 230-236.10.1016/j.knee.2015.02.00125709088 Search in Google Scholar

26. Lin C-F., Gross M., Ji C., Padua D., Weinhold P., Garrett W.E., Yu B. (2009) A stochastic biomechanical model for risk and risk factors of non-contact anterior cruciate ligament injuries. J. Biomech., 42: 418-423. Search in Google Scholar

27. Lloyd D., Buchanan T., Besier T. (2005) Neuromuscular biomechanical modeling to understand knee ligament loading. Med. Sci. Sports Exerc., 37: 1939-1947. Search in Google Scholar

28. McKeon P.O., Hertel J. (2008) Systematic review of postural control and lateral ankle instability, part II: is balance training clinically effective? J. Athl. Train., 43: 305-315.10.4085/1062-6050-43.3.305238642418523567 Search in Google Scholar

29. Medina J.M., McLeod T.C.V., Howell S.K,, Kingma J.J. (2008) Timing of neuromuscular activation of the quad-riceps and hamstrings prior to landing in high school male athletes, female athletes, and female non-athletes. J. Electromyogr. Kinesiol., 18: 591-597. Search in Google Scholar

30. Mehl J., Diermeier T., Herbst E., Imhoff A.B., Stoffels T., Zantop T., Petersen W., Achtnich A. (2018) Evidence-based concepts for prevention of knee and ACL injuries. 2017 guidelines of the ligament committee of the German Knee Society (DKG). Arch. Orthop. Trauma. Surg., 138: 51-61. Search in Google Scholar

31. Mohammadpour S., Rajabi R., Minoonejad H., Sharifnezhad A. (2019) Association Between Preparatory Knee Muscle Activation and Knee Valgus Angle During Single Leg Cross Drop Landing Following Anterior Cruciate Ligament Reconstruction. J. Rehabil. Res. Dev., 6: 15-20. Search in Google Scholar

32. Myer G.D., Ford K.R., Palumbo O.P., Hewett T.E. (2005) Neuromuscular training improves performance and lower-extremity biomechanics in female athletes. J. Strength Cond. Res., 19: 51-60. Search in Google Scholar

33. Neamatallah Z., Herrington L., Jones R. (2020) An investigation into the role of gluteal muscle strength and EMG activity in controlling hip and knee motion during landing tasks. Phys. Ther. Sport, 43: 230-235.10.1016/j.ptsp.2019.12.00831902735 Search in Google Scholar

34. Nyland J., Brand E., Fisher B. (2010) Update on rehabilitation following ACL reconstruction. Open Access J. Sports Med., 1: 151. Search in Google Scholar

35. Weir J.P., Quantifying test-retest reliability using the intraclass correlation coefficient and the SEM. The Journal of Strength & Conditioning Research, 2005. 19(1): p. 231-240. Search in Google Scholar

36. Olsen O-E., Myklebust G., Engebretsen L., Bahr R. (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am. J. Sports Med., 32: 1002-1012. Search in Google Scholar

37. Padua D.A., Bell D.R., Clark M.A. (2012) Neuromuscular characteristics of individuals displaying excessive medial knee displacement. J. Athl. Train., 47: 525-536. Search in Google Scholar

38. Palmieri-Smith R.M., Wojtys E.M., Ashton-Miller J.A. (2008) Association between preparatory muscle activation and peak valgus knee angle. J. Electromyogr. Kinesiol., 18: 973-979. Search in Google Scholar

39. Paterno M.V., Schmitt L.C., Ford K.R., Rauh M.J., Myer G.D., Huang B., Hewett T.E. (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am. J. Sports Med., 38: 1968-1978.10.1177/0363546510376053492096720702858 Search in Google Scholar

40. Sahrmann S. (2010) Movement system impairment syndromes of the extremities, cervical and thoracic spines-e-book. Elsevier Health Sciences. Search in Google Scholar

41. Scholtes S.A., Salsich G.B. (2017) A dynamic valgus index that combines hip and knee angles: assessment of utility in females with patellofemoral pain. Int. J. Sports Phys. Ther., 12: 333. Search in Google Scholar

42. Teitz C. (2001) Video analysis of ACL injuries. Prevention of noncontact ACL injuries 87-92. Search in Google Scholar

43. Vaz J.R., Stergiou N., Diniz A., Dinis R., Pezarat-Correia P. (2020) Postural control is altered in females with excessive medial knee displacement. Sports Biomech., 1-15.10.1080/14763141.2020.176718732546063 Search in Google Scholar

44. Viitasalo J.T., Salo A., Lahtinen J. (1998) Neuromuscular functioning of athletes and non-athletes in the drop jump. Eur. J. Appl. Physiol., 78: 432-440. Search in Google Scholar

45. Webster K.A., Gribble P.A. (2010) Time to Stabilization of Anterior Cruciate Ligament–Reconstructed Versus Healthy Knees in National Collegiate Athletic Association Division I Female Athletes. J. Athl. Train., 45: 580-585.10.4085/1062-6050-45.6.580297800921062181 Search in Google Scholar

46. Wikstrom E.A., Fournier K.A., McKeon P.O. (2010) Postural control differs between those with and without chronic ankle instability. Gait Posture, 32: 82-86.10.1016/j.gaitpost.2010.03.01520418101 Search in Google Scholar

47. Zahradnik D., Uchytil J., Farana R., Jandacka D. (2014) Ground reaction force and valgus knee loading during landing after a block in female volleyball players. J. Hum. Kinet., 40: 67-75. Search in Google Scholar

48. Zhang L-Q, Wang G. (2001) Dynamic and static control of the human knee joint in abduction–adduction. J. Biomech., 34: 1107-1115. Search in Google Scholar

eISSN:
2080-2234
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Basic Medical Science, other, Clinical Medicine, Public Health, Sports and Recreation, Physical Education