Open Access

CFD Analysis of a Round Shaped Air Cushion Vehicle with Flexible Skirt Segments at 90° Part I: Different Positions of Bag to Cushion Feed Orifice


Cite

Air cushion vehicles represent an interesting research area, mainly from their application point of view. But, at the same time, represents the reason of the scarcity of published results. Based on a series of initial simulations carried out by authors, which analysed lift forces for a round-shaped air cushion vehicle where the segments of the flexible skirt were inclined at 90˚, it was decided to carry out more complex studies regarding this configuration, presented in a series of articles. This complex study consists in performing static CFD simulations, in which values for different constructive elements are modified in order to analyse their influence on lift force. In this first article, the imposed fixed parameters are: angle of inclination of the segments of the flexible skirt and height of the segments, respectively. The main constructive variable parameters are: air clearance height and length between the edge of the bag to cushion feed orifice and inner wall of the flexible skirt segments. The simulations were carried out in ANSYS Fluent software, where velocity contours, streamlines and velocity profiles from the exit under the flexible skirt were analysed and through Curve Fitting Toolbox application found in MATLAB program, the equations were established that describe lift force variation.