Cite

T. Marjot et al., “Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study,” J. Hepatol., vol. 74, no. 3, pp. 567–577, 2021, doi: 10.1016/j. jhep.2020.09.024. Marjot T. Outcomes following SARS-CoV-2 infection in patients with chronic liver disease: An international registry study ,” J. Hepatol ., Vol. 74 , no. 3 , pp. 567 577 , 2021 , doi: 10.1016/j.jhep.2020.09.024 . Open DOISearch in Google Scholar

S. W. Mohammed, “The role of IL-6 in pathogensis of covid -19,” Univ. Thi-Qar J. Sci., vol. 10, no. 1, pp. 4–7, 2023, doi: 10.32792/utq/utjsci/v10i1.895. Mohammed S. W. The role of IL-6 in pathogensis of covid -19 ,” Univ. Thi-Qar, J. Sci ., Vol. 10 , no. 1 , pp. 4 7 , 2023 , doi: 10.32792/utq/utjsci/v10i1.895 . Open DOISearch in Google Scholar

A. Zghair and C. Kasim, “Bacteriophage and nanotechnology in the management of COVID-19: A Review Article,” Univ. Thi-Qar J. Sci., vol. 9, no. 2, pp. 29–37, 2022, doi: 10.32792/utq/utjsci/v9i2.900. Zghair A. and, Kasim C. Bacteriophage and nanotechnology in the management of COVID-19: A Review Article ,” Univ. Thi-Qar, J. Sci ., Vol. 9 , no. 2 , pp. 29 37 , 2022 , doi: 10.32792/utq/utjsci/v9i2.900 . Open DOISearch in Google Scholar

A. Tufa et al., “Inflammatory mediators profile in patients hospitalized with COVID-19: A comparative study,” Front. Immunol., vol. 13, no. 7, pp. 1–14, 2022, doi: 10.3389/fimmu.2022.964179. Tufa A. Inflammatory mediators profile in patients hospitalized with COVID-19: A comparative study ,” Front. Immunol ., Vol. 13 , no. 7 , pp. 1 14 , 2022 , doi: 10.3389/fimmu.2022.964179 . Open DOISearch in Google Scholar

C. Storm and C. Storm, “Cytokine Storm,” N. Engl. J. Med., vol. 384, no. 16, p. e59, 2021, doi: 10.1056/nejmc2036236. Storm C. and, Storm C. Cytokine Storm ,” N. Engl. J. Med ., Vol. 384 , no. 16 , p. e59 , 2021 , doi: 10.1056/nejmc2036236 . Open DOISearch in Google Scholar

Y. Wang and S. Perlman, “COVID-19: Inflammatory Profile,” Annu. Rev. Med., vol. 73, pp. 65–80, 2022, doi: 10.1146/annurev-med-042220-012417. Wang Y. and, Perlman S. COVID-19: Inflammatory Profile ,” Annu. Rev. Med ., Vol. 73 , pp. 65 80 , 2022 , doi: 10.1146/annurev-med-042220-012417 . Open DOISearch in Google Scholar

M. Ghasemzadeh, J. Ahmadi, and E. Hosseini, “Plateletleukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis?,” Thromb. Res., vol. 213, no. 3, pp. 179–194, 2022, doi: 10.1016/j.thromres.2022.03.022. Ghasemzadeh M. Ahmadi J. and, Hosseini E. Plateletleukocyte crosstalk in COVID-19: How might the reciprocal links between thrombotic events and inflammatory state affect treatment strategies and disease prognosis? ,” Thromb. Res ., Vol. 213 , no. 3 , pp. 179 194 , 2022 , doi: 10.1016/j.thromres.2022.03.022 . Open DOISearch in Google Scholar

D. Darif, I. Hammi, A. Kihel, I. El Idrissi Saik, F. Guessous, and K. Akarid, “The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong?,” Microb. Pathog., vol. 153, no. 2, p. 104799, 2021, doi: 10.1016/j.micpath.2021.104799. Darif D. Hammi I. Kihel A. El Idrissi Saik I. Guessous F. and, Akarid K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? ,” Microb. Pathog ., Vol. 153 , no. 2 , p. 104799 , 2021 , doi: 10.1016/j.micpath.2021.104799 . Open DOISearch in Google Scholar

M. Gudowska-Sawczuk and B. Mroczko, “What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection?,” Int. J. Mol. Sci., vol. 23, no. 7, pp. 1–13, 2022, doi: 10.3390/ijms23073673. Gudowska-Sawczuk M. and, Mroczko B. What Is Currently Known about the Role of CXCL10 in SARS-CoV-2 Infection? ,” Int. J. Mol. Sci ., Vol. 23 , no. 7 , pp. 1 13 , 2022 , doi: 10.3390/ijms23073673 . Open DOISearch in Google Scholar

F. Coperchini, L. Chiovato, L. Croce, F. Magri, and M. Rotondi, “The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system,” Cytokine Growth Factor Rev., vol. 53, no. 5, pp. 25–32, 2020, doi: 10.1016/j.cytogfr.2020.05.003. Coperchini F. Chiovato L. Croce L. Magri F. and, Rotondi M. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system ,” Cytokine Growth Factor Rev ., Vol. 53 , no. 5 , pp. 25 32 , 2020 , doi: 10.1016/j.cytogfr.2020.05.003 . Open DOISearch in Google Scholar

N. Zhang, Y. Zhao, and X. Wang, “CXCL10 an important chemokine. pdf,” Eur. Rev. Med. Pharmacol. Sci., vol. 24, pp. 7497–7505, 2020. Zhang N. Zhao Y. and, Wang X. CXCL10 an important chemokine. pdf ,” Eur. Rev. Med. Pharmacol. Sci ., Vol. 24 , pp. 7497 7505 , 2020 . Search in Google Scholar

J. E. Allen, “IL-4 and IL-13: Regulators and Effectors of Wound Repair,” Annu. Rev. Immunol., vol. 41, no. 2, pp. 229–254, 2023, doi: 10.1146/annurev-immunol-101921-041206. Allen J. E. IL-4 and IL-13: Regulators and Effectors of Wound Repair ,” Annu. Rev. Immunol ., Vol. 41 , no. 2 , pp. 229 254 , 2023 , doi: 10.1146/annurev-immunol-101921-041206 . Open DOISearch in Google Scholar

J. G. de O. Santos et al., “Impact of SARS-CoV-2 on saliva: TNF-α, IL-6, IL-10, lactoferrin, lysozyme, IgG, IgA, and IgM,” J. Oral Biosci., vol. 64, no. 1, pp. 108–113, 2022, doi: 10.1016/j. job.2022.01.007. de J. G. Santos O. Impact of SARS-CoV-2 on saliva: TNF-α, IL-6, IL-10, lactoferrin, lysozyme, IgG, IgA, and IgM ,” J. Oral Biosci ., Vol. 64 , no. 1 , pp. 108 113 , 2022 , doi: 10.1016/j.job.2022.01.007 . Open DOISearch in Google Scholar

N. Karin and H. Razon, “Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity,” Cytokine, vol. 109, no. 1, pp. 24–28, 2018, doi: 10.1016/j. cyto.2018.02.012. Karin N. and, Razon H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity ,” Cytokine , Vol. 109 , no. 1 , pp. 24 28 , 2018 , doi: 10.1016/j.cyto.2018.02.012 . Open DOISearch in Google Scholar

M. Blot et al., “CXCL10 could drive longer duration of mechanical ventilation during COVID-19 ARDS,” Crit. Care, vol. 24, no. 1, pp. 1–15, 2020, doi: 10.1186/s13054-020-03328-0. Blot M. CXCL10 could drive longer duration of mechanical ventilation during COVID-19 ARDS ,” Crit. Care , Vol. 24 , no. 1 , pp. 1 15 , 2020 , doi: 10.1186/s13054-020-03328-0 . Open DOISearch in Google Scholar

F. Coperchini, L. Chiovato, G. Ricci, L. Croce, F. Magri, and M. Rotondi, “The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved,” Cytokine Growth Factor Rev., vol. 58, no. 12, pp. 82–91, 2021, doi: 10.1016/j.cytogfr.2020.12.005. Coperchini F. Chiovato L. Ricci G. Croce L. Magri F. and, Rotondi M. The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved ,” Cytokine Growth Factor Rev ., Vol. 58 , no. 12 , pp. 82 91 , 2021 , doi: 10.1016/j.cytogfr.2020.12.005 . Open DOISearch in Google Scholar

M. Basheer, E. Saad, R. Hagai, and N. Assy, “Clinical predictors of mortality and critical illness in patients with covid-19 pneumonia,” Metabolites, vol. 11, no. 10, pp. 1–13, 2021, doi: 10.3390/metabo11100679. Basheer M. Saad E. Hagai R. and, Assy N. Clinical predictors of mortality and critical illness in patients with covid-19 pneumonia ,” Metabolites , Vol. 11 , no. 10 , pp. 1 13 , 2021 , doi: 10.3390/metabo11100679 . Open DOISearch in Google Scholar

W. Luo, J. W. Zhang, W. Zhang, Y. L. Lin, and Q. Wang, “Circulating levels of IL-2, IL-4, TNF-α, IFN-γ, and C-reactive protein are not associated with severity of COVID-19 symptoms,” J. Med. Virol., vol. 93, no. 1, pp. 89–91, 2021, doi: 10.1002/jmv.26156. Luo W. Zhang J. W. Zhang W. Lin Y. L. and, Wang Q. Circulating levels of IL-2, IL-4, TNF-α, IFN-γ, and C-reactive protein are not associated with severity of COVID-19 symptoms ,” J. Med. Virol ., Vol. 93 , no. 1 , pp. 89 91 , 2021 , doi: 10.1002/jmv.26156 . Open DOISearch in Google Scholar

M. Gudowska-Sawczuk, J. Kudelski, and B. Mroczko, “The role of chemokine receptor cxcr3 and its ligands in renal cell carcinoma,” Int. J. Mol. Sci., vol. 21, no. 22, pp. 1–11, 2020, doi: 10.3390/ijms21228582. Gudowska-Sawczuk M. Kudelski J. and, Mroczko B. The role of chemokine receptor cxcr3 and its ligands in renal cell carcinoma ,” Int. J. Mol. Sci ., Vol. 21 , no. 22 , pp. 1 11 , 2020 , doi: 10.3390/ijms21228582 . Open DOISearch in Google Scholar

S. Kochumon et al., “Adipose tissue gene expression of CXCL10 and CXCL11 modulates inflammatory markers in obesity: implications for metabolic inflammation and insulin resistance,” Ther. Adv. Endocrinol. Metab., vol. 11, pp. 1–11, 2020, doi: 10.1177/2042018820930902. Kochumon S. Adipose tissue gene expression of CXCL10 and CXCL11 modulates inflammatory markers in obesity: implications for metabolic inflammation and insulin resistance ,” Ther. Adv. Endocrinol. Metab ., Vol. 11 , pp. 1 11 , 2020 , doi: 10.1177/2042018820930902 . Open DOISearch in Google Scholar

A. Da Porto et al., “Relationship between cytokine release and stress hyperglycemia in patients hospitalized with COVID-19 infection,” Front. Med., vol. 9, pp. 1–8, 2022, doi: 10.3389/fmed.2022.988686. Da Porto A. Relationship between cytokine release and stress hyperglycemia in patients hospitalized with COVID-19 infection ,” Front. Med ., Vol. 9 , pp. 1 8 , 2022 , doi: 10.3389/fmed.2022.988686 . Open DOISearch in Google Scholar

S. B. Sen Omit et al., “Identification of Comorbidities, Genomic Associations, and Molecular Mechanisms for COVID-19 Using Bioinformatics Approaches,” Biomed Res. Int., vol. 2023, no. 12, pp. 1–23, 2023, doi: 10.1155/2023/6996307. Sen Omit S. B. Identification of Comorbidities, Genomic Associations, and Molecular Mechanisms for COVID-19 Using Bioinformatics Approaches ,” Biomed Res. Int ., Vol. 2023 , no. 12 , pp. 1 23 , 2023 , doi: 10.1155/2023/6996307 . Open DOISearch in Google Scholar

M. Blot et al., “The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome,” J. Transl. Med., vol. 18, no. 1, pp. 1–14, 2020, doi: 10.1186/s12967-020-02646-9. Blot M. The dysregulated innate immune response in severe COVID-19 pneumonia that could drive poorer outcome ,” J. Transl. Med ., Vol. 18 , no. 1 , pp. 1 14 , 2020 , doi: 10.1186/s12967-020-02646-9 . Open DOISearch in Google Scholar

Y. Zhao et al., “Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease,” JCI Insight, vol. 5, no. 13, pp. 4–14, 2020, doi: 10.1172/jci.insight.139834. Zhao Y. Longitudinal COVID-19 profiling associates IL-1RA and IL-10 with disease severity and RANTES with mild disease ,” JCI Insight , Vol. 5 , no. 13 , pp. 4 14 , 2020 , doi: 10.1172/jci.insight.139834 . Open DOISearch in Google Scholar

S. Qi et al., “Sex differences in the immune response to acute COVID-19 respiratory tract infection,” Biol. Sex Differ., vol. 12, no. 1, pp. 1–10, 2021, doi: 10.1186/s13293-021-00410-2. Qi S. Sex differences in the immune response to acute COVID-19 respiratory tract infection ,” Biol. Sex Differ ., Vol. 12 , no. 1 , pp. 1 10 , 2021 , doi: 10.1186/s13293-021-00410-2 . Open DOISearch in Google Scholar

Q. Lu et al., “Changes of serum IL-10, IL-1β, IL-6, MCP-1, TNF-α, IP-10 and IL-4 in COVID-19 patients,” Int. J. Clin. Pract., vol. 75, no. 9, pp. 1–8, 2021, doi: 10.1111/ijcp.14462. Lu Q. Changes of serum IL-10, IL-1β, IL-6, MCP-1, TNF-α, IP-10 and IL-4 in COVID-19 patients ,” Int. J. Clin. Pract ., Vol. 75 , no. 9 , pp. 1 8 , 2021 , doi: 10.1111/ijcp.14462 . Open DOISearch in Google Scholar

J. R. Nakkala, Z. Li, W. Ahmad, K. Wang, and C. Gao, “Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases,” Acta Biomater., vol. 123, pp. 1–30, 2021, doi: 10.1016/j.act-bio.2021.01.025. Nakkala J. R. Li Z. Ahmad W. Wang K. and, Gao C. Immunomodulatory biomaterials and their application in therapies for chronic inflammation-related diseases ,” Acta Biomater ., Vol. 123 , pp. 1 30 , 2021 , doi: 10.1016/j.act-bio.2021.01.025 . Open DOISearch in Google Scholar

H. Kolb, “Obese visceral fat tissue inflammation: from protective to detrimental?,” BMC Med., vol. 20, no. 1, pp. 1–14, 2022, doi: 10.1186/s12916-022-02672-y. Kolb H. Obese visceral fat tissue inflammation: from protective to detrimental? ,” BMC Med ., Vol. 20 , no. 1 , pp. 1 14 , 2022 , doi: 10.1186/s12916-022-02672-y . Open DOISearch in Google Scholar

M. Rahmati and M. A. Moosavi, “Cytokine-Targeted Therapy in Severely ill COVID-19 Patients: Options and Cautions,” Eurasian J. Med. Oncol., vol. 4, no. 2, pp. 179–180, 2020, doi: 10.14744/ejmo.2020.72142. Rahmati M. and, Moosavi M. A. Cytokine-Targeted Therapy in Severely ill COVID-19 Patients: Options and Cautions ,” Eurasian, J. Med. Oncol ., Vol. 4 , no. 2 , pp. 179 180 , 2020 , doi: 10.14744/ejmo.2020.72142 . Open DOISearch in Google Scholar

A.-H. Ahmed and M. B. Salih, “Effect of the COVID-19 vaccine on sex hormones and their relationship with IL-10,” Int. J. Health Sci. (Qassim)., vol. 6, no. 4, pp. 11853–11859, 2022, doi: 10.53730/ijhs.v6ns1.7905. Ahmed A.-H. and, Salih M. B. Effect of the COVID-19 vaccine on sex hormones and their relationship with IL-10 ,” Int. J. Health Sci. (Qassim) ., Vol. 6 , no. 4 , pp. 11853 11859 , 2022 , doi: 10.53730/ijhs.v6ns1.7905 . Open DOISearch in Google Scholar

Y. Chang, M. Bai, and Q. You, “Associations between Serum Interleukins (IL-1 β, IL-2, IL-4, IL-6, IL-8, and IL-10) and Disease Severity of COVID-19: A Systematic Review and Meta-Analysis,” Biomed Res. Int., vol. 2022, no. 1, pp. 1–5, 2022, doi: 10.1155/2022/2755246. Chang Y. Bai M. and, You Q. Associations between Serum Interleukins (IL-1 β, IL-2, IL-4, IL-6, IL-8, and IL-10) and Disease Severity of COVID-19: A Systematic Review and MetaAnalysis ,” Biomed Res. Int ., Vol. 2022 , no. 1 , pp. 1 5 , 2022 , doi: 10.1155/2022/2755246 . Open DOISearch in Google Scholar

M. A. F. Queiroz et al., “Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome,” Front. Cell. Infect. Microbiol., vol. 12, no. 6, pp. 1–11, 2022, doi: 10.3389/fcimb.2022.922422. Queiroz M. A. F. Cytokine Profiles Associated With Acute COVID-19 and Long COVID-19 Syndrome ,” Front. Cell. Infect. Microbiol ., Vol. 12 , no. 6 , pp. 1 11 , 2022 , doi: 10.3389/fcimb.2022.922422 . Open DOISearch in Google Scholar

L. Sun et al., “New concepts of IL-10-induced lung fibrosis: Fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis,” Am. J. Physiol. - Lung Cell. Mol. Physiol., vol. 300, no. 3, pp. 341–353, 2011, doi: 10.1152/ajplung.00122.2010. Sun L. New concepts of IL-10-induced lung fibrosis: Fibrocyte recruitment and M2 activation in a CCL2/CCR2 axis ,” Am. J. Physiol. - Lung Cell. Mol. Physiol ., Vol. 300 , no. 3 , pp. 341 353 , 2011 , doi: 10.1152/ajplung.00122.2010 . Open DOISearch in Google Scholar

A. Saeidi et al., “T-cell exhaustion in chronic infections: Reversing the state of exhaustion and reinvigorating optimal protective immune responses,” Front. Immunol., vol. 9, no. NOV, pp. 1–12, 2018, doi: 10.3389/fimmu.2018.02569. Saeidi A. T-cell exhaustion in chronic infections: Reversing the state of exhaustion and reinvigorating optimal protective immune responses ,” Front. Immunol ., Vol. 9 , no. NOV , pp. 1 12 , 2018 , doi: 10.3389/fimmu.2018.02569 . Open DOISearch in Google Scholar

C. Dimeglio, F. Herin, G. Martin-Blondel, M. Miedougé, and J. Izopet, “Antibody titers and protection against a SARS-CoV-2 infection,” J. Infect., vol. 84, no. 2, pp. 248–288, 2022, doi: 10.1016/j.jinf.2021.09.013. Dimeglio C. Herin F. Martin-Blondel G. Miedougé M. and, Izopet J. Antibody titers and protection against a SARS-CoV-2 infection ,” J. Infect ., Vol. 84 , no. 2 , pp. 248 288 , 2022 , doi: 10.1016/j.jinf.2021.09.013 . Open DOISearch in Google Scholar

eISSN:
2247-059X
Language:
English
Publication timeframe:
Volume Open
Journal Subjects:
Medicine, Clinical Medicine, Internal Medicine, Pneumology, other