Cite

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990 Oct;215(3):403–410. https://doi.org/10.1016/S0022-2836(05)80360-2AltschulSFGishWMillerWMyersEWLipmanDJ. Basic local alignment search tool. J Mol Biol. 1990Oct;215(3):403410. https://doi.org/10.1016/S0022-2836(05)80360-210.1016/S0022-2836(05)80360-2Search in Google Scholar

Antal Z, Manczinger L, Kredics L, Kevei F, Nagy E. Complete DNA sequence and analysis of a mitochondrial plasmid in the mycoparasitic Trichoderma harzianum strain T95. Plasmid. 2002 Mar; 47(2):148–152. https://doi.org/10.1006/plas.2001.1559AntalZManczingerLKredicsLKeveiFNagyE. Complete DNA sequence and analysis of a mitochondrial plasmid in the mycoparasitic Trichoderma harzianum strain T95. Plasmid. 2002Mar; 47(2):148152. https://doi.org/10.1006/plas.2001.155910.1006/plas.2001.155911982336Search in Google Scholar

Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al.; The Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nat Genet. 2000 May;25(1):25–29. https://doi.org/10.1038/75556AshburnerMBallCABlakeJABotsteinDButlerHCherryJMDavisAPDolinskiKDwightSSEppigJTThe Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Nat Genet. 2000May;25(1):2529. https://doi.org/10.1038/7555610.1038/75556303741910802651Search in Google Scholar

Bao W, Kojima KK, Kohany O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015 Dec; 6(1):11. https://doi.org/10.1186/s13100-015-0041-9BaoWKojimaKKKohanyO. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob DNA. 2015Dec; 6(1):11. https://doi.org/10.1186/s13100-015-0041-910.1186/s13100-015-0041-9445505226045719Search in Google Scholar

Baroncelli R, Piaggeschi G, Fiorini L, Bertolini E, Zapparata A, Pè ME, Sarrocco S, Vannacci G. Draft Whole-Genome Sequence of the Biocontrol Agent Trichoderma harzianum T6776. Genome Announc. 2015 Jun 25;3(3):e00647–15. https://doi.org/10.1128/genomeA.00647-15BaroncelliRPiaggeschiGFioriniLBertoliniEZapparataAMESarroccoSVannacciG. Draft Whole-Genome Sequence of the Biocontrol Agent Trichoderma harzianum T6776. Genome Announc. 2015Jun25;3(3):e0064715. https://doi.org/10.1128/genomeA.00647-1510.1128/genomeA.00647-15446354126067977Search in Google Scholar

Benson G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999 Jan 01;27(2):573–580. https://doi.org/10.1093/nar/27.2.573BensonG. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 1999Jan01;27(2):573580. https://doi.org/10.1093/nar/27.2.57310.1093/nar/27.2.5731482179862982Search in Google Scholar

Cai C, Wu JR. Preliminary study on Aecidium pourthiaea Syd. of heather rust. North Horticult. 2008;1:208–210.CaiCWuJR. Preliminary study on Aecidium pourthiaea Syd. of heather rust. North Horticult. 2008;1:208210.Search in Google Scholar

Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009 Jan 01;37 Database:D233–D238. https://doi.org/10.1093/nar/gkn663CantarelBLCoutinhoPMRancurelCBernardTLombardVHenrissatB. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009Jan01;37Database:D233D238. https://doi.org/10.1093/nar/gkn66310.1093/nar/gkn663268659018838391Search in Google Scholar

Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, Li Y, Ye J, Yu C, Li Z, et al. SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. 2018 Jan 01;7(1):1–6. https://doi.org/10.1093/gigascience/gix120ChenYChenYShiCHuangZZhangYLiSLiYYeJYuCLiZ, SOAPnuke: a MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience. 2018Jan01;7(1):16. https://doi.org/10.1093/gigascience/gix12010.1093/gigascience/gix120578806829220494Search in Google Scholar

Črešnar B, Petrič Š. Cytochrome P450 enzymes in the fungal kingdom. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 2011 Jan;1814(1):29–35. https://doi.org/10.1016/j.bbapap.2010.06.020ČrešnarBPetričŠ. Cytochrome P450 enzymes in the fungal kingdom. Biochimica et Biophysica Acta (BBA) – Proteins and Proteomics. 2011Jan;1814(1):2935. https://doi.org/10.1016/j.bbapap.2010.06.02010.1016/j.bbapap.2010.06.02020619366Search in Google Scholar

Cui X, Lu Z, Wang S, Jing-Yan Wang J, Gao X. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics. 2016 Jun 15;32(12):i332–i340. https://doi.org/10.1093/bioinformatics/btw271CuiXLuZWangSJing-Yan WangJGaoX. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction. Bioinformatics. 2016Jun15;32(12):i332i340. https://doi.org/10.1093/bioinformatics/btw27110.1093/bioinformatics/btw271490835527307635Search in Google Scholar

Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma LJ, Baker SE, Rep M, et al. The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007 Sep 07;317(5843):1400–1402. https://doi.org/10.1126/science.1143708CuomoCAGüldenerUXuJRTrailFTurgeonBGDi PietroAWaltonJDMaLJBakerSERepM, The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science. 2007Sep07;317(5843):14001402. https://doi.org/10.1126/science.114370810.1126/science.1143708Search in Google Scholar

Doehlemann G, van der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 2009 Feb 6;5(2):e1000290–e1000290. https://doi.org/10.1371/journal.ppat.1000290DoehlemannGvan der LindeKAßmannDSchwammbachDHofAMohantyAJacksonDKahmannR. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog. 2009Feb6;5(2):e1000290e1000290. https://doi.org/10.1371/journal.ppat.100029010.1371/journal.ppat.1000290Search in Google Scholar

Gallo A, Ferrara M, Perrone G. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel). 2013 Apr 19;5(4):717–742. https://doi.org/10.3390/toxins5040717GalloAFerraraMPerroneG. Phylogenetic study of polyketide synthases and nonribosomal peptide synthetases involved in the biosynthesis of mycotoxins. Toxins (Basel). 2013Apr19;5(4):717742. https://doi.org/10.3390/toxins504071710.3390/toxins5040717Search in Google Scholar

Gruber S, Kubicek CP, Seidl-Seiboth V. Differential regulation of orthologous chitinase genes in mycoparasitic Trichoderma species. Appl Environ Microbiol. 2011 Oct;77(20):7217–7226. https://doi.org/10.1128/AEM.06027-11GruberSKubicekCPSeidl-SeibothV. Differential regulation of orthologous chitinase genes in mycoparasitic Trichoderma species. Appl Environ Microbiol. 2011Oct;77(20):72177226. https://doi.org/10.1128/AEM.06027-1110.1128/AEM.06027-11Search in Google Scholar

Herrera-Estrella A. Chapter 33 – Genome-wide approaches toward understanding mycotrophic Trichoderma species. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnology and Biology of Trichoderma. Amsterdam (The Netherlands): Elsevier; 2014. p. 455–464. https://doi.org/10.1016/B978-0-444-59576-8.00033-3Herrera-EstrellaA. Chapter 33 – Genome-wide approaches toward understanding mycotrophic Trichoderma species. In: GuptaVKSchmollMHerrera-EstrellaAUpadhyayRSDruzhininaITuohyMG, editors. Biotechnology and Biology of Trichoderma. Amsterdam (The Netherlands): Elsevier; 2014. p. 455464. https://doi.org/10.1016/B978-0-444-59576-8.00033-310.1016/B978-0-444-59576-8.00033-3Search in Google Scholar

Hu G, Leger RJS. A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evol Biol. 2004 Nov;17(6):1204–1214. https://doi.org/10.1111/j.1420-9101.2004.00786.xHuGLegerRJS. A phylogenomic approach to reconstructing the diversification of serine proteases in fungi. J Evol Biol. 2004Nov;17(6):12041214. https://doi.org/10.1111/j.1420-9101.2004.00786.x10.1111/j.1420-9101.2004.00786.xSearch in Google Scholar

Kalvari I, Nawrocki EP, Argasinska J, Quinones-Olvera N, Finn RD, Bateman A, Petrov AI. Non-coding rna analysis using the rfam database. Curr Protoc Bioinformatics. 2018 Jun;62(1):e51. https://doi.org/10.1002/cpbi.51KalvariINawrockiEPArgasinskaJQuinones-OlveraNFinnRDBatemanAPetrovAI. Non-coding rna analysis using the rfam database. Curr Protoc Bioinformatics. 2018Jun;62(1):e51. https://doi.org/10.1002/cpbi.5110.1002/cpbi.51Search in Google Scholar

Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M, Hirakawa M. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006 Jan 01;34(90001):D354–D357. https://doi.org/10.1093/nar/gkj102KanehisaMGotoSHattoriMAoki-KinoshitaKFItohMKawashimaSKatayamaTArakiMHirakawaM. From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res. 2006Jan01;34(90001):D354D357. https://doi.org/10.1093/nar/gkj10210.1093/nar/gkj102Search in Google Scholar

Kanehisa M, Goto S, Kawashima S, Okuno Y, Hattori M. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004 Jan 01;32(90001):277D–280. https://doi.org/10.1093/nar/gkh063KanehisaMGotoSKawashimaSOkunoYHattoriM. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004Jan01;32(90001):277D280. https://doi.org/10.1093/nar/gkh06310.1093/nar/gkh063Search in Google Scholar

Kanehisa M. A database for post-genome analysis. Trends Genet. 1997 Sep;13(9):375–376. https://doi.org/10.1016/S0168-9525(97)01223-7KanehisaM. A database for post-genome analysis. Trends Genet. 1997Sep;13(9):375376. https://doi.org/10.1016/S0168-9525(97)01223-710.1016/S0168-9525(97)01223-7Search in Google Scholar

Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017 May;27(5):722–736. https://doi.org/10.1101/gr.215087.116KorenSWalenzBPBerlinKMillerJRBergmanNHPhillippyAM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017May;27(5):722736. https://doi.org/10.1101/gr.215087.11610.1101/gr.215087.116541176728298431Search in Google Scholar

Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011 Apr;12(4):R40. https://doi.org/10.1186/gb-2011-12-4-r40KubicekCPHerrera-EstrellaASeidl-SeibothVMartinezDADruzhininaISThonMZeilingerSCasas-FloresSHorwitzBAMukherjeePK, Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol. 2011Apr;12(4):R40. https://doi.org/10.1186/gb-2011-12-4-r4010.1186/gb-2011-12-4-r40321886621501500Search in Google Scholar

Li J, Xie J, Li XN, Zhou ZF, Liu FL, Chen YH. [Isolation, identification and antimicrobial activity of mycoparasites (Pestalotiopsis) from Aecidium pourthiaea] (in Chinese). Biotechnol Bull. 2017;33(3):122–127. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2017.03.018LiJXieJLiXNZhouZFLiuFLChenYH. [Isolation, identification and antimicrobial activity of mycoparasites (Pestalotiopsis) from Aecidium pourthiaea] (in Chinese). Biotechnol Bull. 2017;33(3):122127. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2017.03.018Search in Google Scholar

Li J, Yang YH, Zhou L, Cheng LJ, Chen YH. Destructive effects of a mycoparasite Trichoderma atroviride SS003 on aeciospores of Cronartium ribicola. J Phytopathol. 2014 Jun;162(6):396–401. https://doi.org/10.1111/jph.12202LiJYangYHZhouLChengLJChenYH. Destructive effects of a mycoparasite Trichoderma atroviride SS003 on aeciospores of Cronartium ribicola. J Phytopathol. 2014Jun;162(6):396401. https://doi.org/10.1111/jph.1220210.1111/jph.12202Search in Google Scholar

Liao G, Wu P, Liu Z, Xue J, Li H, Wei X. 2H-pyranone and isocoumarin derivatives from the endophytic fungus Pestalotiopsis microspora SC3082 derived from Scaevola taccada (Gaertn.) Roxb. Nat Prod Res. 2020 Jan 30:1–8. https://doi.org/10.1080/14786419.2020.1719488LiaoGWuPLiuZXueJLiHWeiX. 2H-pyranone and isocoumarin derivatives from the endophytic fungus Pestalotiopsis microspora SC3082 derived from Scaevola taccada (Gaertn.) Roxb. Nat Prod Res. 2020Jan30:18. https://doi.org/10.1080/14786419.2020.171948810.1080/14786419.2020.171948832000518Search in Google Scholar

Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997 Mar 01;25(5):955–964. https://doi.org/10.1093/nar/25.5.955LoweTMEddySR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997Mar01;25(5):955964. https://doi.org/10.1093/nar/25.5.95510.1093/nar/25.5.9551465259023104Search in Google Scholar

Magrane M, UniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011 Mar 29; 2011(0): bar009. https://doi.org/10.1093/database/bar009MagraneMUniProt Consortium. UniProt Knowledgebase: a hub of integrated protein data. Database (Oxford). 2011Mar29; 2011(0): bar009. https://doi.org/10.1093/database/bar00910.1093/database/bar009307042821447597Search in Google Scholar

Medema MH, Blin K, Cimermancic P, de Jager V, Zakrzewski P, Fischbach MA, Weber T, Takano E, Breitling R. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011 Jul 01;39(Web Server issue) suppl_2:W339–W346. https://doi.org/10.1093/nar/gkr466MedemaMHBlinKCimermancicPde JagerVZakrzewskiPFischbachMAWeberTTakanoEBreitlingR. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011Jul01;39(Web Server issue) suppl_2:W339W346. https://doi.org/10.1093/nar/gkr46610.1093/nar/gkr466312580421672958Search in Google Scholar

Mueller O, Kahmann R, Aguilar G, Trejo-Aguilar B, Wu A, de Vries RP. The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol. 2008 Aug;45 Suppl 1:S63–S70. https://doi.org/10.1016/j.fgb.2008.03.012MuellerOKahmannRAguilarGTrejo-AguilarBWuAde VriesRP. The secretome of the maize pathogen Ustilago maydis. Fungal Genet Biol. 2008Aug;45Suppl 1:S63S70. https://doi.org/10.1016/j.fgb.2008.03.01210.1016/j.fgb.2008.03.01218456523Search in Google Scholar

Nitta M, Furukawa T, Shida Y, Mori K, Kuhara S, Morikawa Y, Ogasawara W. A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol. 2012 May;49(5):388–397. https://doi.org/10.1016/j.fgb.2012.02.009NittaMFurukawaTShidaYMoriKKuharaSMorikawaYOgasawaraW. A new Zn(II)2Cys6-type transcription factor BglR regulates β-glucosidase expression in Trichoderma reesei. Fungal Genet Biol. 2012May;49(5):388397. https://doi.org/10.1016/j.fgb.2012.02.00910.1016/j.fgb.2012.02.00922425594Search in Google Scholar

Pal KK, Scholar V, Gardener BBM. Biological Control of Plant Pathogens. Plant Health Instructor. 2006. https://doi.org/10.1094/phi-a-2006-1117-02PalKKScholarVGardenerBBM. Biological Control of Plant Pathogens. Plant Health Instructor. 2006. https://doi.org/10.1094/phi-a-2006-1117-0210.1094/PHI-A-2006-1117-02Search in Google Scholar

Schoberle TJ, Nguyen-Coleman CK, Herold J, Yang A, Weirauch M, Hughes TR, McMurray JS, May GS. A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus. PLoS Genet. 2014 May 1;10(5): e1004336. https://doi.org/10.1371/journal.pgen.1004336SchoberleTJNguyen-ColemanCKHeroldJYangAWeirauchMHughesTRMcMurrayJSMayGS. A novel C2H2 transcription factor that regulates gliA expression interdependently with GliZ in Aspergillus fumigatus. PLoS Genet. 2014May1;10(5): e1004336. https://doi.org/10.1371/journal.pgen.100433610.1371/journal.pgen.1004336400671724784729Search in Google Scholar

Seidl-Seiboth V, Ihrmark K, Druzhinina I, Karlsson M. Chapter 5 – Molecular Evolution of Trichoderma Chitinases. In: Gupta VK, Schmoll M, Herrera-Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG, editors. Biotechnology and Biology of Trichoderma. Amsterdam (The Netherlands): Elsevier; 2014. p. 67–78. https://doi.org/10.1016/B978-0-444-59576-8.00005-9Seidl-SeibothVIhrmarkKDruzhininaIKarlssonM. Chapter 5 – Molecular Evolution of Trichoderma Chitinases. In: GuptaVKSchmollMHerrera-EstrellaAUpadhyayRSDruzhininaITuohyMG, editors. Biotechnology and Biology of Trichoderma. Amsterdam (The Netherlands): Elsevier; 2014. p. 6778. https://doi.org/10.1016/B978-0-444-59576-8.00005-910.1016/B978-0-444-59576-8.00005-9Search in Google Scholar

Shi-Kunne X, Seidl MF, Faino L, Thomma BPHJ. Draft genome sequence of a strain of cosmopolitan fungus Trichoderma atroviride. Genome Announc. 2015 Jun 25;3(3):e00287–15. https://doi.org/10.1128/genomeA.00287-15Shi-KunneXSeidlMFFainoLThommaBPHJ. Draft genome sequence of a strain of cosmopolitan fungus Trichoderma atroviride. Genome Announc. 2015Jun25;3(3):e0028715. https://doi.org/10.1128/genomeA.00287-1510.1128/genomeA.00287-15442428525953169Search in Google Scholar

Steindorff AS, Ramada MHS, Coelho ASG, Miller RNG, Pappas GJ Jr, Ulhoa CJ, Noronha EF. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics. 2014 Dec;15(1):204. https://doi.org/10.1186/1471-2164-15-204SteindorffASRamadaMHSCoelhoASGMillerRNGPappasGJJrUlhoaCJNoronhaEF. Identification of mycoparasitism-related genes against the phytopathogen Sclerotinia sclerotiorum through transcriptome and expression profile analysis in Trichoderma harzianum. BMC Genomics. 2014Dec;15(1):204. https://doi.org/10.1186/1471-2164-15-20410.1186/1471-2164-15-204400404824635846Search in Google Scholar

Suginta W, Sirimontree P, Sritho N, Ohnuma T, Fukamizo T. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions. Int J Biol Macromol. 2016 Dec;93 Pt A:1111–1117. https://doi.org/10.1016/j.ijbiomac.2016.09.066SugintaWSirimontreePSrithoNOhnumaTFukamizoT. The chitin-binding domain of a GH-18 chitinase from Vibrio harveyi is crucial for chitin-chitinase interactions. Int J Biol Macromol. 2016Dec;93Pt A:11111117. https://doi.org/10.1016/j.ijbiomac.2016.09.06610.1016/j.ijbiomac.2016.09.06627667544Search in Google Scholar

Sui GQ, Zhang DY, Kong L, Chen YH, Li J. [Identification of the mycoparasites from Aecidium Pourthiaea and screening] (in Chinese). Biotechnol Bull. 2020;36:25–32. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2019-1154SuiGQZhangDYKongLChenYHLiJ. [Identification of the mycoparasites from Aecidium Pourthiaea and screening] (in Chinese). Biotechnol Bull. 2020;36:2532. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2019-1154Search in Google Scholar

Tanapichatsakul C, Khruengsai S, Monggoot S, Pripdeevech P. Production of eugenol from fungal endophytes NeoPestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. Peer J. 2019 Feb 12;7:e6427. https://doi.org/10.7717/peerj.6427TanapichatsakulCKhruengsaiSMonggootSPripdeevechP. Production of eugenol from fungal endophytes NeoPestalotiopsis sp. and Diaporthe sp. isolated from Cinnamomum loureiroi leaves. Peer J. 2019Feb12;7:e6427. https://doi.org/10.7717/peerj.642710.7717/peerj.6427637693630775186Search in Google Scholar

Tarailo-Graovac M, Chen N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:Unit 4.10. https://doi.org/10.1002/0471250953.bi0410s25Tarailo-GraovacMChenN. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics. 2009Mar;Chapter 4:Unit 4.10. https://doi.org/10.1002/0471250953.bi0410s2510.1002/0471250953.bi0410s2519274634Search in Google Scholar

Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, et al. The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4(1):41. https://doi.org/10.1186/1471-2105-4-41TatusovRLFedorovaNDJacksonJDJacobsARKiryutinBKooninEVKrylovDMMazumderRMekhedovSLNikolskayaAN, The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003;4(1):41. https://doi.org/10.1186/1471-2105-4-4110.1186/1471-2105-4-4122295912969510Search in Google Scholar

Tatusov RL, Koonin EV, Lipman DJ. A genomic perspective on protein families. Science. 1997 Oct 24;278(5338):631–637. https://doi.org/10.1126/science.278.5338.631TatusovRLKooninEVLipmanDJ. A genomic perspective on protein families. Science. 1997Oct24;278(5338):631637. https://doi.org/10.1126/science.278.5338.63110.1126/science.278.5338.6319381173Search in Google Scholar

Taylor JE, Crous PW, Palm ME. Foliar and stem fungal pathogens of Proteaceae in Hawaii. Mycotaxon. 2001;78:449–490.TaylorJECrousPWPalmME. Foliar and stem fungal pathogens of Proteaceae in Hawaii. Mycotaxon. 2001;78:449490.Search in Google Scholar

Wang S, Mi X, Wu Z, Zhang L, Wei C. Characterization and pathogenicity of Pestalotiopsis -like species associated with gray blight disease on Camellia sinensis in Anhui Province, China. Plant Dis. 2019 Nov;103(11):2786–2797. https://doi.org/10.1094/PDIS-02-19-0412-REWangSMiXWuZZhangLWeiC. Characterization and pathogenicity of Pestalotiopsis -like species associated with gray blight disease on Camellia sinensis in Anhui Province, China. Plant Dis. 2019Nov;103(11):27862797. https://doi.org/10.1094/PDIS-02-19-0412-RE10.1094/PDIS-02-19-0412-RE31535958Search in Google Scholar

Wang X, Zhang X, Liu L, Xiang M, Wang W, Sun X, Che Y, Guo L, Liu G, Guo L, et al. Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics. 2015; 16(1):28. https://doi.org/10.1186/s12864-014-1190-9WangXZhangXLiuLXiangMWangWSunXCheYGuoLLiuGGuoL, Genomic and transcriptomic analysis of the endophytic fungus Pestalotiopsis fici reveals its lifestyle and high potential for synthesis of natural products. BMC Genomics. 2015; 16(1):28. https://doi.org/10.1186/s12864-014-1190-910.1186/s12864-014-1190-9432082225623211Search in Google Scholar

Xie J, Li J, Yang YH, Li XN, Chen YH, Zhao PJ. Four pestalpolyols from a mycoparasite Pestalotipsis sp. PG52. Arch Pharm Res. 2015 Oct 20. https://doi.org/10.1007/s12272-015-0675-7XieJLiJYangYHLiXNChenYHZhaoPJ. Four pestalpolyols from a mycoparasite Pestalotipsis sp. PG52. Arch Pharm Res. 2015Oct20. https://doi.org/10.1007/s12272-015-0675-710.1007/s12272-015-0675-726481133Search in Google Scholar

Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007 May 08;35 Web Server:W265–W268. https://doi.org/10.1093/nar/gkm286XuZWangH. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007May08;35Web Server:W265W268. https://doi.org/10.1093/nar/gkm28610.1093/nar/gkm286193320317485477Search in Google Scholar

Yang XL, Zhang JZ, Luo DQ. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat Prod Rep. 2012;29(6):622–641. https://doi.org/10.1039/c2np00073cYangXLZhangJZLuoDQ. The taxonomy, biology and chemistry of the fungal Pestalotiopsis genus. Nat Prod Rep. 2012;29(6):622641. https://doi.org/10.1039/c2np00073c10.1039/c2np00073c22249927Search in Google Scholar

Zhao Z, Liu H, Wang C, Xu JR. Correction: comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2014;15(1):6. https://doi.org/10.1186/1471-2164-15-6ZhaoZLiuHWangCXuJR. Correction: comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC Genomics. 2014;15(1):6. https://doi.org/10.1186/1471-2164-15-610.1186/1471-2164-15-6389338424422981Search in Google Scholar

Zhu L, Tao K, Zuo YB, Zhao ZY, Chen YH. [The biological characteristics of aeciospore germination of Aecidium wenshanense] (in Chinese). Plant Protect. 2020;46:203–207.ZhuLTaoKZuoYBZhaoZYChenYH. [The biological characteristics of aeciospore germination of Aecidium wenshanense] (in Chinese). Plant Protect. 2020;46:203207.Search in Google Scholar

Zhuang JY, Wei SX. Additional notes on anamorphic rust fungi of China I. Some aecial form species. J Mycosystema. 2016;35: 1468–1474.ZhuangJYWeiSX. Additional notes on anamorphic rust fungi of China I. Some aecial form species. J Mycosystema. 2016;35: 14681474.Search in Google Scholar

Zi W. Enzyme activities on decomposing needle litter of Pinus armandii by five dominant saprophytic fungi. Microbiol China. 2015;42:654–664.ZiW. Enzyme activities on decomposing needle litter of Pinus armandii by five dominant saprophytic fungi. Microbiol China. 2015;42:654664.Search in Google Scholar

eISSN:
2544-4646
Language:
English
Publication timeframe:
4 times per year
Journal Subjects:
Life Sciences, Microbiology and Virology